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This paper studies a three-sided moral hazard problem with one agent exerting up-front effort and two
agents exerting ongoing effort in a continuous-time model. The agents’ efforts jointly affect the probability

of survival and thus the expected cash flow of the project. In the optimal contract, the timing of payments
reflects the timing of effort: payments for up-front effort precede payments for ongoing effort. Several patterns
are possible for the cash allocation between the two agents with ongoing effort. In one case, where the two
agents face equally severe moral hazard, they share the cash flow equally at each point of time. In another case,
where the two agents have different severities of moral hazard, their payments are sequential. In a more general
case, the two agents with ongoing effort first receive the cash flow alternately with an increasing frequency of
switches and then divide the cash flow at each point of time. This study provides a framework for understanding
a broad set of business-contracting issues. The characteristics suggested in the optimal contract help us analyze
the causes of business failure such as the recent debacle of mortgage-backed securities.
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1. Introduction
Businesses often face the problem of providing incen-
tives for agents to work effectively together on projects
that develop over time. Many contracting problems
involve multiple agents exerting effort at different
times. For example, in an entrepreneurial firm, the
entrepreneur sets up the business at the outset,
whereas the chief executive officer and chief operating
officer run its daily operations. In a law firm, part-
ners all exert ongoing effort. In the mortgage bank-
ing industry, the loan originator screens borrowers,
and the rating agency evaluates the creditworthiness
of the mortgage-backed securities (MBS) at the out-
set, whereas the servicer collects mortgage payments
and detects or prevents potential defaults over time.
In all of these business collaborations, the division
of cash flow over time among the agents affects the
agents’ effort choices and thus the success of the
project.
This paper derives an optimal contract in a contin-

uous-time model in which three agents exert efforts
at different times: one at the outset and two over
time. For concreteness, the remainder of the paper
uses a restaurant parable with an entrepreneur, a
chef, and a manager who differ in expertise. The
entrepreneur provides effort at the outset to set up
the business, whereas the chef and the manager exert
ongoing effort to achieve cash flow. The entrepreneur
has unique expertise in starting restaurants: selecting

locations, purchasing equipment, designing menus,
decorating restaurants, and hiring the chef and man-
ager. The chef has special skills in cooking, and the
manager organizes services in the restaurant: hiring
people, purchasing supplies, advertising, and manag-
ing all other activities that keep the restaurant run-
ning smoothly.
These agents’ efforts are costly and unobservable,

and collectively determine the quality of the restau-
rant and thus the probability of subsequent business
failure. While operating, the restaurant generates cash
flow at a fixed rate. Thus, higher effort increases
the probability of survival and, consequently, the
expected value of cash flow. To focus on incentives,
we assume that all agents have linear utility; they
are protected by limited liability and are indiffer-
ent between receiving a dollar today and receiving it
tomorrow. The agents divide all cash flows through-
out the life of the restaurant.
We analyze three models: three-sided moral haz-

ard, sequential compensation, and proportional sharing.
The three-sided moral hazard model captures real-world
scenarios with different timing of effort and moral
hazard in teams (as described in Holmström 1982).
Observe that, for any given amount of payments, the
entrepreneur’s incentives are not affected by the tim-
ing of payments because the up-front effort is sunk
once the restaurant is set up, whereas the manager
and chef would stop working once the payment flow
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stops. Thus, deferring compensation for the manager
and chef improves their incentives without impairing
the entrepreneur’s incentives. In the optimal contract,
a predetermined critical date arises, prior to which
the entrepreneur obtains all proceeds of the restaurant
and after which the manager and chef jointly bear the
full variation in cash flow.
The manager and the chef may see one of sev-

eral compensation patterns after the critical date.
When the manager and chef face equally severe moral
hazard problems, they share the cash flow equally
throughout the project’s remaining life. In another
case, wherein the severities of moral hazard of the
two agents differ, a second critical date arises, prior
to which one agent (say, for example, the manager)
claims all proceeds and after which the other agent
(the chef) becomes the sole claimant of cash flow. In
a more general case, the manager and chef split the
proceeds first over time (that is, they receive pay-
ments alternately), with an increasing frequency of
switches. In a finite amount of time, the switches
become infinitely frequent, and the system reaches an
accumulation point at which the manager and chef
start to split the proceeds at each point of time in
a fixed proportion that is determined by the relative
severities of their moral hazard problems.
To make the basic intuitions more transparent,

we decompose the three-sided moral hazard model
into two models of two-sided moral hazard. In the
sequential compensation model, the entrepreneur pro-
vides effort at the outset to set up the business, and
the manager exerts effort over time, managing as well
as cooking. The optimal compensation rule is sequen-
tial: All proceeds go to the entrepreneur prior to a
predetermined critical date; proceeds go to the man-
ager after the critical date. The lack of payments in
early periods serves as a bonding scheme that induces
the manager to work hard throughout. Prior to the
critical date, the manager must exert effort (though
lower than the first-best) to keep the project running
so that he may receive payments in the future. After
the critical date, the manager becomes the owner of
the business and therefore exerts the first-best effort.
The proportional sharing model characterizes an ongo-

ing business when the restaurant is fully operational.
Over time, both manager and chef expend effort that
jointly determines the failure rate of business. The
optimal compensation rule splits the proceeds of the
restaurant between the two agents in a fixed propor-
tion throughout the life span of the project. The agent
facing the more severe moral hazard problem (that
is, whose effort is less costly or more critical to the
project’s survival) receives more proceeds and thus
has incentives to exert more effort.

We present several extensions of the three basic
models. We also discuss potential efficiency improve-
ment by examining the possibility of a very long-
term contract for the agents. This study suggests an
approach for understanding a broad set of contract-
ing problems in economics and finance that are far
beyond the restaurant example. It rationalizes busi-
ness convention such as deferred compensation for
top executives and profit sharing among business
partners. Furthermore, the characteristics suggested
in the optimal contract help us analyze the causes of
business failure such as the recent mortgage debacle.

1.1. Related Literature
This study contributes to two strands of literature.
It extends static multiagent models with dynam-
ics and it complements dynamic single-agent mod-
els with moral hazard in teams. Early research on
principal-agent or multiple-agent problems focuses
on the optimal design of incentive contracts in a
static setting. Ross (1973) proposes a linear sharing
rule between a (passive) principal and an agent, trad-
ing off efficient production and risk sharing. Wilson
(1968) works with a setting in which multiple agents
all expend effort and shows that the agents share the
proceeds proportional to their degrees of risk aver-
sion. Holmström (1982) shows that the first-best out-
come cannot be reached in the absence of a budget
breaker if the principal also exerts effort.
With a limited-liability constraint, Innes (1990)

shows that a “live-or-die” payoff function is opti-
mal in a setting with one agent: the agent receives
nothing if the payoff is lower than a certain thresh-
old and claims all of the payoff otherwise. Having
much of the same flavor, our sequential compensation
model can be interpreted as an extension of Innes’
limited-liability model to a multiple-agent case in a
continuous-time framework. Innes (1990), however,
does not provide much insight into understanding
the proportional sharing model and three-sided moral
hazard model.
A growing literature on dynamic (mostly conti-

nuous-time) agency theory examines intertemporal
incentive provisions. In a setting in which the agent’s
effort affects the drift of the Brownian motion of
the output process, Holmström and Milgrom (1987)
show that the optimal contract is linear in output if
the agent’s utility function is exponential. Schättler
and Sung (1993) provide a more general mathemati-
cal framework, and Sung (1995) and Ou-Yang (2003)
show that, in the case of exponential utility, the lin-
earity result holds if the agent’s effort affects the dif-
fusion term of the Brownian motion as well.1 In his

1 Several recent papers expand the boundary of dynamic agency
problems with a single agent. Sannikov (2008) incorporates optimal
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seminal paper, Lazear (1979) proposes a long-term
implicit labor contract under which young workers
are underpaid while old workers are overpaid rel-
ative to their marginal contributions. This deferred
compensation induces workers to exert effort, because
a shirking worker will be fired and the promised
wage stream forfeited. Finally, Edmans et al. (2009)
provide a dynamic model in which compensation is
deferred due to consumption smoothing and manipu-
lation prevention. Notice that all of the dynamic mod-
els above include only one agent, whereas this paper
addresses dynamic agency problems with multiple
agents who exert effort at different times.
In a product warranty context, Dybvig and Lutz

(1993) study a two-sided moral hazard problem
involving a producer and a consumer. The producer
exerts up-front effort that determines the durability of
the product, and the consumer exerts effort over time
to maintain the product. The effort of the producer
and consumer jointly determines the project’s failure
rate. The consumer pays the producer up front for
the ongoing service benefits of the product. Under the
optimal contract, the producer pays the consumer (to
repair the product) in the event of an early product
breakdown.
This paper focuses on a three-sided moral hazard

model, with one agent exerting up-front effort and
two agents exerting ongoing effort. The introduction
of the third agent, who exerts ongoing effort, makes
the model applicable to contracting problems involv-
ing multiple agents with different timing of effort,
such as the entrepreneur, chief executive officer, and
chief operating officer in a start-up business. After the
agent with up-front effort is fully compensated, the
two agents with ongoing effort divide the cash flow
under the so-called singular control, bang-bang control,
or chattering control for different parameter combina-
tions. This whole set of results cannot be anticipated
by reading (Dybvig and Lutz 1993). In addition, this
study proposes a solution to a moral hazard problem
with multiple agents, all exerting ongoing effort. The
proposed proportional sharing rule allocates the pro-
ceeds at each point of time to the agents in a pro-
portion determined by the relative severities of their
moral hazard.
This paper also differs from Dybvig and Lutz (1993)

in its solution methodology, assumptions, and eco-
nomic applications. It makes use of optimal control

career paths in his model. DeMarzo and Sannikov (2006) and
DeMarzo and Fishman (2007) study dynamic capital structure with
privately observable cash flow. They show that the optimal con-
tract resembles a mixture of common equity, long-term debt (or a
cash position), and line of credit. DeMarzo et al. (2009) incorporate
financing, investment, and uncertainty in demand into a dynamic
agency problem. They show that the agent’s compensation depends
on output price and is deferred when past profits are low.

theory in constructing and verifying the optimal cash
allocation rule, whereas Dybvig and Lutz (1993) rely
on a dominance argument, which is of limited use
beyond deferring payments for ongoing effort. More-
over, the pay-as-you-go system adopted in this study is
more useful for real-world scenarios, such as MBS and
Real Estate Investment Trust (REIT), in which profits
are divided among agents as dividends or coupons
at the end of each period due to tax or legal consid-
erations. In contrast, Dybvig and Lutz (1993) endow
the consumer with initial funds to purchase the prod-
uct and transfer wealth from the producer to the con-
sumer in the event of an early product breakdown.
Thus, the model in this study is appropriate in a
compensation setting, whereas the model in Dybvig
and Lutz (1993) is more relevant in a product war-
ranty setting.
The rest of this paper proceeds as follows. Section 2

presents a three-sided moral hazard model with dif-
ferent timing of effort. This three-sided moral hazard
model is then decomposed into two models of two-
sided moral hazard. Section 3 includes a sequential
compensation model with one agent exerting up-front
effort and the other agent exerting effort over time;
and §4 develops a proportional sharing model with
both agents expending ongoing effort. Section 5 pro-
vides some examples of potential applications of the
model, and §6 concludes. Proofs and detailed deriva-
tions are included in the appendix.

2. Three-Sided Moral Hazard
This section provides a model with three-sided moral
hazard. Referring to the restaurant example, the
entrepreneur exerts effort at the outset when setting
up the business, whereas the manager and chef exert
effort over time to achieve cash flow. The agents’
efforts are costly and unobservable, and jointly affect
the probability of subsequent project failure. The cash
flow rate is assumed to be constant while the project
is running. If a failure occurs, the cash flow becomes
zero and remains zero thereafter. We show that, under
the optimal contract, the entrepreneur who exerts
up-front effort claims all proceeds prior to a known
critical date, whereas the manager and chef who
exert ongoing effort divide all proceeds afterward.
Several patterns are possible for allocating the cash
flow between the manager and the chef after the
critical date.
The technical setting is as follows. Suppose the

initial investment is used to purchase and install
equipment specifically geared to the restaurant at
the location, such that its resale value upon liquida-
tion is negligible. This sunk initial investment is thus
omitted in subsequent analysis. The restaurant has
a maximum life span T and generates cash flow at
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a fixed rate b while in business. At the outset, the
entrepreneur, manager, and chef sign a compensation
contract that completely divides the cash flow of the
restaurant. While the restaurant is operating, the man-
ager receives c1�t�, the chef receives c2�t�, and the
entrepreneur receives b − c1�t� − c2�t�, where c1�t� ≥ 0,
c2�t� ≥ 0, and c1�t� + c2�t� ≤ b for t ∈ �0�T �. The as-
sumption above represents financial constraints: All
three agents are protected by limited liability, and
no one injects cash into the project after the initial
investment. On the other hand, they cannot be paid
more than the available profits. Essentially, the agents
share the cash flow generated by the project over time
as dividends or coupons.2 This pay-as-you-go setting
(without saving of proceeds) approximates real-world
scenarios such as amortized mortgage payments and
profit sharing among business partners.
Given the incentive contract above, the entrepreneur

chooses initial effort e0 ∈ �0��� (where � denotes
the ideal effort level), whereas the manager and chef
choose ongoing effort e1�t� and e2�t� (effort intensi-
ties: measurable functions from �0�T � to �0�1�). To
make the problem analytically tractable while provid-
ing useful insight into the dynamic incentive problem
with multiple agents, we assume a simple informa-
tion structure with no intermediate information flow
during the project’s life. The only uncertainty is the
timing of project failure. Our model is more general
than single-period models and are simpler than most
dynamic models.
Although we can replace the constant cash flow

rate in our model by time-dependent cash flow
rates, instantaneous cash flow remains independent
of effort. The assumption of a fixed cash flow rate
captures businesses with relatively stable cash flows,
much like food concessions and mortgage portfolios.
The moral hazard problem is reflected in the project’s
failure rate. Alternatively, we could model the influ-
ence of effort choices on the magnitude of subsequent
cash flow rates. The optimal contract still defers pay-
ments to the agents who expend ongoing effort. The
case with both effort-dependent cash flows and effort-
dependent failure rates adds little economic insight
and is not tractable in the current setting.
The formal game has the following time line:
• At the outset, the entrepreneur, the manager, and

the chef sign an incentive contract that determines
how to share the restaurant’s proceeds over time. The
three agents then choose their effort plans, and the
entrepreneur expends effort up front.

2 If, alternatively, the entrepreneur deposits an extremely large
amount of cash up front, and if the project fails in a very initial
stage, the manager and chef seize this deposit. As a result, the man-
ager’s and chef’s incentives are only distorted in the very initial
period. This forcing contract, however, is not feasible in many real-
world scenarios.

• At any time during the project’s life, the manager
and chef exert effort and the three agents divide the
project’s cash flow according to the initial plan.
The more efforts that the agents expend, the higher

the project’s survival rate and the longer the expected
life span. Given a constant cash flow rate, the longer
the project survives, the greater the expected cash
flow will be. We use a failure rate, rather than the
survival rate, merely for modeling convenience. The
absolute failure rate (probability density of the failure
time) of the project at time s (for s ∈ �0�T �) is

f �s�e0�e1�·��e2�·����m1�m2�

= ��−e0�+m1

∫ s

	=0

(
1−e1�	�

)
d	 +m2

∫ s

	=0

(
1−e2�	�

)
d	�

where subscripts 0, 1, and 2 represent the entrepre-
neur, the manager, and the chef, respectively. The
entrepreneur’s effort choice e0 has the same influence
��−e0� on the failure rate at all future times. The man-
ager and the chef expend effort e1�	� and e2�	� that
have impacts m1�1− e1�	�� and m2�1− e2�	��, respec-
tively, on the failure rates at all subsequent times.
One possible explanation for the cumulative impact
is that shirking increases the probability of failure by
destroying items related to the productivity of the
project. The effects of three sources of moral hazard
are additive, and �, m1, and m2 are positive constants.

The probability of failure before time t, F �t� e0�
e1� · �� e2� · ����m1�m2� (simply F �t� hereafter), is given
by

F �t� = �� − e0�t + m1

∫ t

s=0

∫ s

	=0
�1− e1�	�� d	 ds

+ m2

∫ t

s=0

∫ s

	=0
�1− e2�	�� d	 ds
 (1)

We require that �T + 1
2 �m1 + m2�T

2 ≤ 1 to ensure that
F �t� ≤ 1 for all feasible effort levels for t ∈ �0�T �.
A hazard rate is an alternative measure to describe

the influence of shirking on project failure. The haz-
ard rate, which is conditional on survival until the
moment, equals the absolute failure rate divided by
the probability of survival. Using the hazard rate usu-
ally simplifies the stationarity analysis and makes
solution tractable in an infinite-horizon model. With
a finite horizon, however, cross terms created by the
hazard rate would complicate the algebra. Thus, we
use the absolute failure rate in this model.
We assume that all agents have a linear utility

of consumption and are indifferent between receiv-
ing a dollar today and deferring it until tomorrow.3

3 The form of the solution is identical if all agents have the same
discount rate. Alternatively, the values used in our model can be
interpreted as present values, assuming that the cash flow growth
rate equals the discount rate.
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The cost of effort is strictly convex, differentiable, and
increasing, with a zero cost for zero effort so that an
interior optimum exists. We choose to use quadratic
functions that simplify the algebra while rendering
intuitive economic interpretations. Omitting the sunk
initial investment, we write the expected social sur-
plus of the project as the expected cash flow net of
costs of effort:

� = b
∫ T

t=0

(
1− F �t�

)
dt

− �e20 − k1

∫ T

t=0
e1�t�

2 dt − k2

∫ T

t=0
e2�t�

2 dt
 (2)

At time t, the project’s cash flow is b, whereas the
probability that the project reaches t without failure
is 1− F �t�. Thus, b

∫ T

t=0

(
1 − F �t�

)
dt represents the

expected payoff of the project. Terms �, k1, and k2 (pos-
itive constants) represent the unit costs of effort for the
entrepreneur, the manager, and the chef, respectively.
The cumulative cost of effort for agent i (for i = 1�2)
is ki

∫ T

t=0 ei�t�
2 dt.4

Throughout the paper, we choose a cash alloca-
tion rule to maximize the expected social surplus
subject to the incentive compatibility (IC) constraint of
each agent.5 In solving the maximization problem,
we replace the agents’ IC constraints by the first-
order conditions. This first-order approach is appro-
priate because the agents’ maximization problems
are convex: The linear utility is separable from the
convex disutility of exerting effort. In particular, the
entrepreneur chooses effort e0 ∈ �0��� to maximize his
utility:

�0 =
∫ T

t=0
�b − c1�t� − c2�t�

)(
1− F �t�� dt − �e20�

where the first term is the expected payment to the
entrepreneur. Substituting for F �t� given in (1), we
obtain

�0 = C1 + e0

∫ T

s=0

∫ T

	=s
�b − c1�	� − c2�	�� d	 ds − �e20� (3)

where C1 collects terms independent of e0.6

4 We assume that the agents incur disutility of exerting effort over
the entire horizon of the project. This assumption changes the
payoff only to the second order, but makes the impact of effort
more separable across time and renders an analytical solution to
this dynamic three-sided moral hazard problem. This additional
cost of effort can be interpreted as the switching cost to a new job
upon a project failure.
5 This is one way to find an efficient (second-best) contract, and it
has the merit of focusing attention on incentives. Alternatively, we
could maximize the utility of one agent subject to the individual
rationality constraints of other agents to map out the frontier of
efficient contracts.
6 C1 ≡ ∫ T

t=0�b − c1�t� − c2�t���1 − �t − m1

∫ t

s=0

∫ s

	=0�1 − e1�	�� d	 ds −
m2

∫ t

s=0

∫ s

	=0�1− e2�	�� d	 ds�dt.

Maximizing�0 with respect to e0 (by setting the first-
order derivative of (3) at zero) yields the entrepreneur’s
optimal effort as

e0 = 1
2�

∫ T

s=0

∫ T

	=s
�b − c1�	� − c2�	�� d	 ds
 (4)

Point-wise maximizing the manager’s and chef’s util-
ity yields their optimal effort levels as7

e1�t� = m1

2k1

∫ T

s=t

∫ T

	=s
c1�	� d	 ds and

e2�t� = m2

2k2

∫ T

s=t

∫ T

	=s
c2�	� d	 ds


(5)

We summarize the contracting problem below in
Problem 1.

Problem 1. Choose payments to the manager and chef,
c1�t� and c2�t� (measurable functions from �0�T � to �0� b�,
satisfying c1�t�+c2�t� ≤ b), to maximize the expected social
surplus given in (2) subject to IC constraints given in (4)
and (5), where the cumulative failure rate at time t is given
in (1).

Changing the order of integrations, we have∫ T

s=t

∫ T

	=s
ci�	� d	 ds

=
∫ T

	=t
ci�	��	 − t� d	 (for i = 1�2) and

∫ T

s=0

∫ T

	=s
�b − c1�	� − c2�	�� d	 ds

= 1
2bT 2 −

∫ T

	=0
�c1�	� + c2�	�� 	d	


Hence, deferring compensation to the manager and
chef could increase

∫ T

	=t
�c1�	� + c2�	�� 	d	 for a

time interval with positive measure, while keeping∫ T

	=0�c1�	� + c2�	�� 	d	 unchanged. This improves the
manager’s and the chef’s incentives without impair-
ing the entrepreneur’s incentives. The entrepreneur’s
effort is sunk at the outset and is thus independent of
the payment timing, whereas the manager and chef
would stop working if the payment flow stops. The
payments in the optimal contract are thus sequen-
tial: The entrepreneur receives all proceeds early on,
whereas the manager and chef share the proceeds
afterward:

c1�	� + c2�	� =
{
0 if 	 < td�

b otherwise,

where td ∈ �0�T � is a predetermined critical date,
which represents, for example, a major milestone
established for managers in entrepreneurial firms.

7 See the appendix for detailed derivation.
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For notational convenience, we denote the sever-
ities of the manager’s and the chef’s moral haz-
ard as s1 ≡ m2

1/4k1 and s2 ≡ m2
2/4k2, respectively. As

m1 increases, so does the importance of the manager’s
effort for the survival of the project. It is then optimal
to induce the manager to exert more effort by allocat-
ing a greater share of cash flow to him. The size of
the share, however, depends also on the costliness of
the manager’s effort; that is, a higher k1 makes it less
desirable to induce the manager’s effort.
Assumption 1 summarizes technical conditions.

Assumption 1. Parameters satisfy
(i) �T + 1

2 �m1 + m2�T
2 ≤ 1,

(ii) �1/4��bT 2 ≤ �,
(iii) �m1/4k1�bT 2 ≤ 1, and
(iv) �m2/4k2�bT 2 ≤ 1.

Assumption 1(i) ensures by (1) that F �t� (which is
a probability) lies in �0�1� for all feasible effort levels
for t ∈ �0�T �. Assumptions 1(ii), (iii), and (iv) ensure
by (4) and (5) that e0 ≤ �, e1�t� ≤ 1, and e2�t� ≤ 1 for
t ∈ �0�T �.
Whereas we discuss more general cases as model

extensions at the end of this section, we now focus on
a special case in which the two agents with ongoing
effort are equally important; i.e., s1 = s2. In this case,
the manager and chef share the cash flow equally at
each point of time throughout the remaining life of
the project. Proposition 1 and Lemmas 1 and 2 for-
mally state the results.

Proposition 1. Suppose Assumption 1 holds and that
the entrepreneur expends initial effort, whereas the man-
ager and chef exert effort over time. Suppose that the man-
ager and chef face equally severe moral hazard; i.e., s1 = s2.
There exists a unique critical date td ∈ �0�T � given by

2t3d − 2Tt2d + 3T 2td − 3
�s1

�T 2 − t2d� = 0� (6)

such that (i) the entrepreneur claims all proceeds prior to td,
namely, c∗

1�t� = c∗
2�t� = 0 for t < td; and (ii) the manager

and chef share the proceeds equally after td, namely, c∗
1�t� =

c∗
2�t� = 1

2b for t ≥ td.

Proof. See the appendix.
Substituting the cash allocation rule described in

Proposition 1 into (4) and (5), we have the following
lemma:

Lemma 1. The (second-best) optimal effort choices when
s1 = s2 are

e∗
0 = 1

4�
bt2d� and for i = 1�2�

e∗
i �t� =

⎧⎪⎪⎨
⎪⎪⎩

mi

8ki

b��T − t�2 − �td − t�2� if t < td�

mi

8ki

b�T − t�2 otherwise.
(7)

All three agents exert suboptimal effort. The effi-
ciency loss is increasing as the severity of the agents’
moral hazard increases; more details are provided
in the appendix. The budget balance constraint (that
is, the three agents completely divide project cash
flows) causes the inefficiency in the second-best solu-
tion. A budget breaker (Holmström 1982) may help
improve efficiency. However, a budget breaker is
infeasible if all agents are wealth constrained. Also,
a budget breaker may introduce some other prob-
lems to the incentive scheme. For example, the budget
breaker may collude with one agent to expropriate
the others.
The comparative statics summarized below in

Lemma 2 are derived from the first-order condition
of (6) with respect to 1/�s1:

dtd

d�1/�s1�
= 3�T 2 − t2d�

6�td − 1
3T �2 + 7

3T
2 + 6/�s1

> 0


Lemma 2. The critical date td (prior to which the
entrepreneur claims all proceeds, and after which the man-
ager and chef share all proceeds) increases with the severity
of the moral hazard of the entrepreneur relative to that of
the manager and chef, 1/�s1.

Given s1 = s2, all statements below about the man-
ager also apply to the chef. Recall that 1/� indi-
cates the severity of the entrepreneur’s moral hazard,
and s1 (≡ m2

1/4k1) indicates the severity of the man-
ager’s moral hazard. A greater 1/�s1 indicates that
the entrepreneur’s moral hazard becomes more severe
relative to that of the manager. As a result, more
proceeds should be allocated to the entrepreneur to
improve incentives. With a constant cash flow rate
conditional on survival, the entrepreneur receives
proceeds over a longer period; that is, td is greater.

2.1. Model Extension and Discussion
After the entrepreneur is fully paid, the manager and
chef proportionally split the cash flow at each point
of time if and only if they have equally severe moral
hazard. For some other parameter combinations, a
second critical date, td2 ∈ �td� T � arises, prior to which
the agent with more severe moral hazard (say, for
example, the manager) receives all proceeds, and after
which the other agent (in this case, the chef) becomes
the sole claimant of the cash flow. This so-called bang-
bang control improves the manager’s incentives prior
to td, and likely prior to td2 even though the man-
ager exerts zero effort after td2. On the other hand, the
chef’s effort is likely to decrease before td2 but is (first-
best) optimal after td2. When the effect of improved
incentives dominates that of the worsened incentives,
social welfare improves.8

8 The proof and a numerical example are provided in the electronic
companion to this paper, which is available as part of the online
version that can be found at http://mansci.journal.informs.org/.
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In a more general case, the optimal cash allocation
between the manager and the chef after td is in the
form of a chattering control. Under a chattering con-
trol, the two agents split the proceeds first over time
for a finite amount of time, and then over quantity at
each point of time. The pattern of payments can be
described as follows. The manager receives all pro-
ceeds during �td� td2�, where td2 ∈ �td� T � is the next
predetermined critical date. The chef then claims all
cash flow during �td2� td3�, where td3 ∈ �td2�T �; then
the manager receives all proceeds during �td3� td4�,
where td4 ∈ �td3�T �, and so on. The switching of pay-
ments accelerates over time and becomes infinitely
frequent in a finite amount of time. The system then
merges into the singular arc on which the manager
and chef split the cash flow proportional to the sever-
ities of their moral hazard at each point of time for
the remaining life of the project.9

The first known example of a chattering control is
the so-called Fuller’s problem (Fuller 1963, Wonham
1963). The switches of payments under a chattering
control are very similar to the changes of directions
of a ball bouncing vertically under the action of grav-
ity. The frequency of payment switches accelerates
over time and becomes infinite when reaching the
singular arc under the chattering control, while the
ball bounces up and down faster and faster before it
comes to its final rest.

3. Sequential Compensation
Section 2 analyzes a three-sided moral hazard model
with one agent exerting up-front effort and two
agents exerting ongoing effort. To make economic
intuitions more transparent and to generate addi-
tional implications, we decompose the three-sided
moral hazard model into a pair of two-sided moral
hazard models. Section 4 provides a proportional
sharing rule to a model with two agents (in the restau-
rant example, the manager and chef) exerting ongoing
effort. This section includes a sequential compensa-
tion model with one agent (the entrepreneur) exert-
ing up-front effort and the other agent (the manager)
exerting ongoing effort.
The technical setting is similar to that in §2. At

the outset, the two agents sign a compensation con-
tract that allocates 0 ≤ c1�t� ≤ b to the manager and
b − c1�t� to the entrepreneur for t ∈ �0�T � while the
restaurant is operating. Given this incentive contract,

9 The cycle durations of switches form a convergent asymptotic
geometric progression. Theoretically, it takes an infinite number
of switches to reach the singular arc. In practice, the switching
points are determined numerically. In many cases, a small num-
ber of switches leading to the singular arc can approximate the
optimal solution arbitrarily closely; see Chap. 2 of Zelikin and
Borisov (1994).

the entrepreneur chooses initial effort e0 ∈ �0��� and
the manager chooses ongoing effort e1�t� (a measur-
able function from �0�T � to �0�1�). The probability of
a failure before t (for t ∈ �0�T �) is determined by the
agents’ shirking:

F �t� = �� − e0�t + m1

∫ t

s=0

∫ s

	=0
�1− e1�	�� d	 ds
 (8)

The project’s expected social surplus is

� = b
∫ T

t=0

(
1− F �t�

)
dt − �e20 − k1

∫ T

t=0
e1�t�

2 dt
 (9)

We choose the cash allocation rule to maximize the
expected social surplus subject to the IC constraint of
each agent. The first-order approach yields the opti-
mal effort of the entrepreneur and manager as

e0 = 1
2�

∫ T

s=0

∫ T

	=s
�b − c1�	�� d	 ds and

e1�t� = m1

2k1

∫ T

s=t

∫ T

	=s
c1�	� d	 ds


(10)

We summarize the contract design problem below
in Problem 2.

Problem 2. Choose payments to the manager 0 ≤
c1�t� ≤ b for t ∈ �0�T � to maximize the expected social sur-
plus given in (9) subject to the IC constraints given in (10),
where the cumulative failure rate at time t is given in (8).

Changing the order of integrations, we have

∫ T

s=t

∫ T

	=s
c1�	� d	 ds =

∫ T

	=t
c1�	��	 − t� d	


Hence, by (10), deferring payments to the manager
increases

∫ T

	=t
c1�	� 	d	 for a time interval with posi-

tive measure while keeping
∫ T

	=0 c1�	� 	d	 unchanged.
This improves the manager’s incentives while not
impairing the entrepreneur’s incentives. As a result,
the expected social surplus will be greater under the
following sequential allocation rule:

c1�	� =
{
0 if 	 < td�

b otherwise,
(11)

where td ∈ �0�T � is a predetermined date.
We denote the severity of the moral hazard problem

of the manager as s1 ≡ m2
1/4k1. Below, Assumption 2

summarizes technical conditions and Proposition 2
describes the optimal compensation contract.

Assumption 2. Parameters satisfy
(i) �T + 1

2m1T
2 ≤ 1,

(ii) �1/4��bT 2 ≤ �, and
(iii) �m1/4k1�bT 2 ≤ 1.
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Assumption 2(i) ensures by (8) that F �t� lies in �0�1�
for all feasible effort levels for any t ∈ �0�T �. By (10),
Assumptions 2(ii) and (iii) ensure that e0 ≤ � and
e1�t� ≤ 1 for any t ∈ �0�T �.

Proposition 2. Suppose Assumption 2 holds and that
the entrepreneur expends initial effort, whereas the man-
ager exerts effort over time. There exists a unique critical
date td ∈ �0�T � given by

t3d + 1
�s1

t2d − 1
�s1

T 2 = 0� (12)

such that (i) the entrepreneur receives all proceeds prior
to td, namely, c∗

1�t� = 0 for t < td; and (ii) the manager
receives all proceeds after td, namely, c∗

1�t� = b for t ≥ td.

Proof. See the appendix.
The optimal effort choices e∗

0 and e∗
1�t� can be

derived by substituting the solution c1�t� given in (11)
into (10). We have the following lemma:

Lemma 3. The �second-best� optimal effort choices of
the entrepreneur and the manager are

e∗
0 = 1

4�
bt2d and

e∗
1�t� =

⎧⎪⎪⎨
⎪⎪⎩

m1

4k1
b��T − t�2 − �td − t�2� if t < td�

m1

4k1
b�T − t�2 otherwise.

(13)

Observe that prior to td, the manager’s optimal
effort is below the first-best level and decreases lin-
early in time. Being the sole owner of the restau-
rant after td, the manager then exerts the first-best
effort, which decreases quadratically over time. The
entrepreneur, on the other hand, exerts suboptimal
effort. The efficiency loss is increasing as the severity
of the agents’ moral hazard problems increases; see
the appendix for details.
The comparative statics are derived from the first-

order condition of (12):

Lemma 4. The critical date td (prior to which the
entrepreneur receives all proceeds and after which the man-
ager claims the cash flow) increases with the project life
span T and the severity of the entrepreneur’s moral hazard
relative to the manager’s, 1/�s1.

Not surprisingly, as the life span T gets longer,
more proceeds (in absolute terms) are allocated to
the entrepreneur. In addition, a greater 1/�s1 indi-
cates that the entrepreneur is more important for the
project’s success. Thus, more of the project’s proceeds
should be allocated to the entrepreneur. Given a con-
stant cash flow rate, the entrepreneur receives cash
flows over a longer period; i.e., the critical date td is
greater.

3.1. Model Extension and Discussion
The contract with sequential compensation may seem
to be too restrictive because we assume a pay-as-
you-go mechanism and the cash flow allocation does
not explicitly depend on the timing of project fail-
ure. It is actually more general than it appears to be.
Consider an alternative institutional setting wherein
a very long-term contract is permitted, similar to the
one used in Lazear (1979). Suppose all proceeds of the
project are deposited in an escrow account and are
distributed to the agents upon a project failure or at
T if the project reaches its life span. The concept of
the optimal incentive scheme in this alternative set-
ting is the same as that stated in Proposition 2: the
entrepreneur who exerts up-front effort bears the cost
of an early project failure.
The incentive contract is characterized by the tim-

ing of project failure. There exists a known critical
date t∗. If the project fails before t∗, the manager claims
all proceeds in the escrow account. This allocation
rule penalizes the entrepreneur for an early failure
that is more likely due to his shirking at the out-
set. On the other hand, if the project fails after t∗,
the entrepreneur claims all proceeds in the escrow
account. This penalizes the manager for not working
hard because a failure in later periods is more likely
due to the manager’s shirking over time. The critical
date t∗ is decreasing as the manager’s moral hazard
becomes more severe relative to the entrepreneur’s.
This improves the incentives of the more impor-
tant agent to work hard. Finally, if the project sur-
vives until its life span T , the two agents divide
the proceeds in the escrow account. The final contin-
gent payments serve as bonuses to provide incentives
for both agents, particularly, to induce the manager
to expend effort after t∗. Reaching the project’s life
span can be interpreted as the IPO or buyout of the
entrepreneurial firm.10

Without saving costs, forced saving improves social
welfare.11 However, saving is wasting assets if the dis-
count rate is much higher than the interest rate in
practice. In addition, forced saving is not practical in
many real-world scenarios such as MBS and REIT due
to legal or tax considerations. Moreover, it may not
be feasible to save all proceeds and make the agents
continue borrowing against their future income.12

10 The compensation schedule with an escrow account works as if
inferences about agents’ effort choices are made based on the time
of project failure, even though agents’ effort levels have been deter-
mined at the outset (similar to the use of the likelihood function in
compensating the agent in Holmström 1979).
11 The proof and a numerical example are provided in the electronic
companion to this paper.
12 This institutional setting suggests a situation similar to the in-
dentured servitude in the American South in the 17th and 18th
centuries.
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4. Proportional Sharing
To gain additional insight into the dynamic moral
hazard in team problem, this section includes a two-
sided moral hazard model in which the manager and
chef exert efforts over time that jointly affect the sur-
vival of an ongoing business. At the outset, the two
agents sign a compensation contract that allocates 0≤
c1�t� ≤ b to the manager and b − c1�t� to the chef for
t ∈ �0�T � while the restaurant is operating. Under this
contract, the manager and chef choose effort plans,
e1�t� and e2�t� (measurable and normalized to fall in
�0�1� for t ∈ �0�T �). We show below that under the
optimal contract, the two agents share the cash flow
at each point of time in a proportion determined by
the severities of their moral hazard problems.
The probability that the project fails before t (for

t ∈ �0�T �) is given by

F �t� = m1

∫ t

s=0

∫ s

	=0
�1− e1�	�� d	 ds

+ m2

∫ t

s=0

∫ s

	=0
�1− e2�	�� d	 ds
 (14)

The expected social surplus is

� = b
∫ T

t=0

(
1− F �t�

)
dt − k1

∫ T

t=0
e1�t�

2 dt

− k2

∫ T

t=0
e2�t�

2 dt
 (15)

Each agent’s strategy satisfies the IC constraint. The
first-order approach yields the optimal effort levels of
the manager and chef as

e1�t� = m1

2k1

∫ T

s=t

∫ T

	=s
c1�	� d	 ds and

e2�t� = m2

2k2

∫ T

s=t

∫ T

	=s

(
b − c1�	�

)
d	 ds


(16)

We summarize the contract design problem below in
Problem 3.

Problem 3. Choose payments to the manager 0 ≤
c1�t� ≤ b for t ∈ �0�T � to maximize the expected social sur-
plus given in (15) subject to the IC constraints given in
(16), where the cumulative failure rate at time t is given
in (14).

Substituting IC constraints given in (16) into (15),
changing the order of integrations, and rearranging
terms, we obtain the expected social surplus as

� = C3−�s1+s2�

·
∫ T

t=0

(∫ T

s=t

∫ T

	=s

(
c1�	�− s1

s1+s2
b

)
d	ds

)2

dt� (17)

where C3 collects terms independent of c1�	� and
si ≡ m2

i /4ki represents the severity of moral hazard of

agent i (for i = 1�2). Given that the second term of (17)
is nonnegative, the maximum of � is reached when
the second term equals zero. Namely, the objective
function (17) is maximized point-wise (for t ∈ �0�T �)
when

∫ T

s=t

∫ T

	=s

(
c1�	� − s1

s1 + s2
b

)
d	 ds = 0


Therefore, the payments to the manager and chef are
(for t ∈ �0�T �)

c∗
1�t� = s1

s1 + s2
b and b − c∗

1�t� = s2
s1 + s2

b


We summarize technical conditions in Assump-
tion 3 and the main result in Proposition 3.

Assumption 3. Parameters satisfy
(i) 1

2 �m1 + m2�T
2 ≤ 1,

(ii) �m1/4k1��s1/�s1 + s2��bT 2 ≤ 1, and
(iii) �m2/4k2��s2/�s1 + s2��bT 2 ≤ 1.

Assumption 3(i) ensures by (14) that F �t� lies in �0�1�
for all feasible effort levels for any t ∈ �0�T �. Assump-
tions 3(ii) and (iii) ensure by (16) that 0≤ e1�t� ≤ 1 and
0≤ e2�t� ≤ 1 for any t ∈ �0�T �.

Proposition 3. Suppose Assumption 3 holds and that
both manager and chef exert ongoing effort. The two agents
share the project’s proceeds in a fixed proportion: c∗

1�t� =
�s1/�s1 + s2��b and b − c∗

1�t� = �s2/�s1 + s2��b, where s1 ≡
m2

1/4k1 and s2 ≡ m2
2/4k2 denote the severities of the moral

hazard of the manager and chef, respectively.

Proof. See the derivation above.13

The compensation contract resembles equity-like
claims.14 At each point in time, the manager and chef
split the cash flow, with the more important agent
(a higher si) receiving a larger fraction. Economically,
it is the quadratic cost of effort for each agent that
prevents us from pushing one agent to work too hard
while keeping the other agent idling anytime dur-
ing the project’s life. We summarize the optimal effort
choices as follows.

13 An alternative proof of Proposition 3 using the maximum prin-
ciple is available upon request. Essentially, the costate variable
(switching function) is identically zero under the proportional shar-
ing rule and we have a singular control. The fourth-order derivative
of the switching function yields c∗

1 �t� = �s1/�s1 + s2��b for t ∈ �0�T �.
14 Casamatta (2003) and Admati and Pfleiderer (1994) model a two-
sided moral hazard problem in a static setting in the context of VC
contracting. Chisholm (1997) and Weinstein (1998) examine empiri-
cally whether agency problems are the driving force for using profit
share contract in the motion picture industry. Bhattacharya and
Lafontaine (1995) summarize the theory and evidence on two-sided
moral hazard problems.
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Lemma 5. The �second-best� optimal effort choices of
the manager and chef �for t ∈ �0�T �� are

e∗
1�t� = m1

4k1

s1
s1 + s2

b�T − t�2 and

e∗
2�t� = m2

4k2

s2
s1 + s2

b�T − t�2

(18)

Observe that the optimal effort decreases over time.
The agent whose effort is more critical to the sur-
vival of the project receives greater cash flow and thus
shirks less relative to the first-best effort. The effi-
ciency loss relative to the first-best is increasing as the
severities of the agents’ moral hazard increase; details
are provided in the appendix.

4.1. Model Extension and Discussion
The proportional sharing rule is optimal in more gen-
eral settings. Suppose more than two agents exert
ongoing effort that jointly affects subsequent project
failure. It can be shown that under the optimal con-
tract, the agents divide the proceeds at each point of
time in a fixed proportion determined by the rela-
tive severities of moral hazard. The optimal sharing
rule in a case with three agents is provided in the
appendix.
In addition, the proportional sharing rule applies

when the cash flow rates and costs of effort vary
over time. Under the optimal contract, agents share
time-variant proceeds in proportions determined by
the time-variant severities of their moral hazard (for
t ∈ �0�T �):

c∗
1�t� = s1�t�

s1�t� + s2�t�
b�t� and c∗

2�t� = s2�t�

s1�t� + s2�t�
b�t��

where s1�t� ≡ m2
1/4k1�t� and s2�t� ≡ m2

2/4k2�t�.
One may wonder why the bang-bang control (that

is, paying the manager and chef sequentially), as
discussed in the extension of the three-sided moral
hazard model after the entrepreneur receives all pay-
ments (t ≥ td), is not optimal when only the two
agents with ongoing effort exist throughout the
project’s life span. One may also wonder why the
manager and chef do not share the proceeds in a fixed
proportion after td in the three-sided moral hazard
model. Actually they do, but only in a special case
when they have the same severity of moral hazard.
The answers to these two questions are the same.
Let us consider the three-sided moral hazard model.

Mathematically, the existence of the entrepreneur and
the time interval in which the entrepreneur claims all
proceeds, t < td, change the maximization problem for
the manager and chef after td. It is no longer feasible
(except in a knife-edge case wherein the two agents
have the same severity of moral hazard) to achieve
the maximum by splitting the proceeds between the

manager and the chef in a fixed proportion through-
out the remaining life of the project. More specifically,
maximizing the expected social surplus is a trade-
off between maximizing terms integrating over �td� T �
and maximizing a term integrating over the project’s
life span, −1/4��

∫ T

s=0

∫ T

	=s
�c1�	� + c2�	�� d	 ds�2; see (20)

and (21) in the appendix. Splitting the proceeds pro-
portionally maximizes the integrals over �td� T �, but it
is more than offset by the value change of the inte-
gral over �0�T � in all but the knife-edge case. In con-
trast, when only the two agents with ongoing effort
exist throughout the project’s life span, the integral
over �0�T � is a constant because c1�t� + c2�t� = b for
any t ∈ �0�T �, whereas the integrals over �td� T � are
maximized when the two agents split the proceeds
proportionally at each point of time; see (17).
Economically, by (4) and (5), the cash allocation

between the manager and the chef after td affects
the effort choices of the agents in all earlier periods,
including periods prior to td. These effort choices,
by (1), affect the failure rates in all subsequent peri-
ods, including periods before and after td. These fail-
ure rates then interact with payments to the agents
in determining the expected social surplus. This
feedback feature makes the early periods in which the
entrepreneur plays an active role undetachable from
the later periods in which the manager and chef share
all the cash flow. As a result, sharing the cash flow
proportionally between the manager and chef at each
point of time after td is not optimal in general.

5. Examples of Potential Applications
This study provides a framework for understanding a
broad set of contracting issues in practice far beyond
the restaurant context. In this section, we discuss
some potential applications of the sequential compen-
sation model and proportional sharing model. First,
let us look at the recent debacle of mortgage-backed
securities. Generated through a process known as
Securitization, MBS are debt obligations that represent
claims to the cash flows from pools of mortgage loans.
A typical securitization process can be described as
follows. A loan originator makes loans to borrowers,
then sells these loans to an MBS issuer. Under the
advice of a rating agency, the issuer (often via a spe-
cial purpose vehicle) pools the loans and repackages
claims to their future cash flows into securities. At the
same time, a servicer is established to collect and pro-
cess future mortgage payments. The rated securities
are then sold to investors.
In the discussion below, we focus on the roles of

the loan originator, the rating agency, and the servicer.
The loan originator and rating agency mainly exert
effort up front to ensure the quality of the underlying
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loans and the securities they back, whereas the ser-
vicer works over time to ensure timely collections of
mortgage payments from borrowers.
The role of the servicer, which includes monitoring

the quality of underlying property, restructuring pay-
ment streams, and foreclosing property when needed,
is critical to improve cash flows, especially for secu-
rities backed by subprime loans. In the current sys-
tem, a servicer typically receives 25–50 basis points of
the unpaid principal balance as compensation for pro-
viding such services. These fees are front-end loaded
because the unpaid principal balance decreases over
time. Our model suggests that the opposite is true:
deferring payments provides stronger incentives for
the servicer to execute best practices to improve loan
performance. If we take the model literally, the ser-
vicer should receive no payment in early years and
claim all proceeds in later years of the securities’
term.
Currently, the loan originator receives all payments

at the outset from the issuer. Although a recourse
clause on early payment default is included in some
loan sales, it typically covers a very short period,
mainly to protect the issuer from fraud rather than
to motivate the originator to ensure loan quality.
Our model suggests that payments to the origina-
tor should come ahead of payments to the servicer.
More importantly, payments to the originator should
be linked to subsequent loan performance. One way
to achieve this is to pay the loan originator over time
out of residual cash flows so that the originator bears
some of the default risk.15 On the other hand, if the
originator insists on receiving a lump-sum payment
at the outset, the originator should offer recourse that
covers a sufficiently long period to allow payment
default to occur.
The rating agency analyzes the pool of loans and

advises the issuer on how to structure the loans and
enhance the credit of MBS (such as geographic diver-
sification) to achieve a specific rating. Paid by the
issuer and pressed by competitors, the rating agency
conceivably has strong incentives to help the issuer
maximize the size of securities with higher ratings
for any given pool of loans. When the reputation
effect alone is not sufficient to solve the problem of
loosened rating standards, our model suggests link-
ing the payments to the rating agency to subsequent
performance of the loans that back the rated secu-
rities. For example, giving rated securities as pay-
ment for initial rating fees and making the rating
agency hold those securities long enough (so the rat-
ing agency faces some default risk) will eliminate

15 Our model leaves out financing. Payments to the agents should
have lower priorities than payments to investors to make the agents
bear default risk.

the rating agency’s incentives to inflate ratings.16 On
the other hand, competition for business will deter the
rating agency from unfairly depressing ratings. We
acknowledge that factors beyond the agents’ control
(such as exceptionally adverse changes in home prices
and interest rates) also affect payment default, which
may temper the incentives provided to the agents in
the optimal contract. Although our model cannot be
prescriptive, it provides a framework for detailed dis-
cussion and analysis of business practices.
This study also helps us understand the wisdom of

business convention. The proportional sharing model
applies to contracting problems involving multiple
agents who exert effort together over time. Even
though some interesting features such as the exis-
tence of paralegal are omitted, the propositional shar-
ing model still reflects the spirit of profit sharing
among important players at law firms. Before mak-
ing partners, associates work long hours and receive
very little compensation. After promotion, junior part-
ners and senior partners split the profits proportion-
ally to their seniorities. This mechanism works in
practice because seniority is considered an appropri-
ate proxy for a partner’s importance and contribu-
tion to the business. In particular, a senior partner
in general has the reputation and ability to procure
business, improve efficiency, and mentor associates as
they progress in their careers.
The proportional sharing model also applies to

contracting between the distributor (sometimes the
studio) and exhibitor (movie theaters) of a motion
picture. The studio/distributor exerts effort to pro-
mote the movie mainly during early weeks, whereas
the exhibitor provides in-house advertisement and
usher services. They typically split the box office rev-
enue, with the distributor’s share starting at 70% in
the opening week and decreasing over the weeks to
come. This adjustment of splits can be attributed to
the decreasing influence of the distributor’s market-
ing strategy on gross receipts.

6. Conclusion
This paper examines a dynamic contracting prob-
lem with three-sided moral hazard. One agent exerts
effort at the outset to set up the business and two
agents exert ongoing effort to achieve cash flows. The
agents’ efforts jointly affect the probability of subse-
quent project failure and thus its expected cash flow.
The timing of payments should reflect the timing of
effort. We show that under the optimal incentive con-
tract, the agent with up-front effort is penalized for
an early project failure that is more likely due to his

16 The rating agency should unload the securities before issuing
updated ratings to prevent rating biases.
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shirking at the outset, whereas the agents with ongo-
ing effort are penalized for a failure occurring in later
periods. In particular, a predetermined critical date
arises, prior to which the agent with up-front effort
claims all cash flows, and after which the two agents
with ongoing effort divide the project’s proceeds. Sev-
eral patterns are possible for allocating cash flows
between the two agents with ongoing effort after the
critical date. In a special case wherein their moral
hazard problems are equally severe, the two agents
split the proceeds equally at each point of time. The
model provides a framework for detailed analysis of
dynamic profit sharing among business partners in
law firms, the movie industry, and mortgage banking
industry.
Our research suggests some directions for future

research on dynamic contracting with multiple agents.
For example, our model assumes that each agent
exerts only one type of effort, either up-front or ongo-
ing. Suppose, alternatively, that there are two agents
with three roles. Using the restaurant example, the
entrepreneur/manager not only exerts effort at the
outset to set up the business but also works over
time to manage its daily operations. Meanwhile, the
chef exerts ongoing effort to ensure food quality. The
general model remains unsolved. In one special case
wherein the dual effort is nontrivial relative to the
chef’s effort, we show that the entrepreneur/manager
collects all proceeds prior to a known critical date,
whereas the chef receives all proceeds afterward.
Finally, in our model, the agents’ efforts have addi-

tive effects on subsequent project failure. In some real-
world applications, however, if one agent (say, the
chef in the restaurant example) exerts zero effort, the
business is destined to fail regardless of what effort
other agents exert. We leave it to future research to
model the complementarity of agents’ efforts in the
production function.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Appendix

Derivation of (5)
The manager’s utility is given by

�1 =
∫ T

t=0
c1�t��1− F �t�� dt − k1

∫ T

t=0
e1�t�

2 dt

= C2 + m1

∫ T

t=0
e1�t�

∫ T

s=t

∫ T

	=s
c1�	� d	 ds dt − k1

∫ T

t=0
e1�t�

2 dt�

where C2 collects terms independent of e1�t�. Maximizing
�1 point-wise with respect to e1�t� yields the manager’s
optimal effort as

e1�t� = m1

2k1

∫ T

s=t

∫ T

	=s
c1�	� d	 ds


Similarly, we obtain the chef’s optimal effort as

e2�t� = m2

2k2

∫ T

s=t

∫ T

	=s
c2�	� d	 ds
 �

The proof of Proposition 1 applies the results of Lem-
mas 6–8, which are stated below the proof.

Proof of Proposition 1
Substituting the IC constraints given in (4) and (5) into (1)
and (2) and omitting the terms independent of c1�t� and
c2�t�, we obtain the following expected social surplus:17

�� = − 1
4�

�x1�0� + y1�0��2 + s1b
∫ T

t=0
x1�t��T − t�2 dt

− s1

∫ T

t=0
x1�t�

2dt + s2b
∫ T

t=0
y1�t��T − t�2 dt

− s2

∫ T

t=0
y1�t�

2 dt� (19)

where

x1�t� ≡
∫ T

s=t

∫ T

	=s
c1�	� d	 ds and y1�t� ≡

∫ T

s=t

∫ T

	=s
c2�	� d	 ds


Define state variables x2�t� = ẋ1�t� and y2�t� = ẏ1�t�; then
we have ẋ2�t� = c1�t� and ẏ2�t� = c2�t�. The optimization
problem is transformed to the following:

Problem 1M. Choose �c1�t�� c2�t�� for t ∈ �0�T � from the
admissible set of controls

c1�t� ≥ 0� c2�t� ≥ 0� and c1�t� + c2�t� ≤ b

17 The expected social surplus is � = �� + �bT − 1
2�bT 2 −

1
6 �m1 + m2�bT 3 + �1/16��b2T 4�. In the remainder of the proof, �� is
referred to as the expected social surplus.
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to maximize �� given in (19) subject to system dynamics

ẋ1�t� = x2�t�� ẋ2�t� = c1�t��

ẏ1�t� = y2�t�� ẏ2�t� = c2�t��

and terminal conditions

x1�T � = 0� x2�T � = 0�

y1�T � = 0� y2�T � = 0


The Hamiltonian is

H = s1bx1�t��T − t�2 − s1x1�t�
2 + s2by1�t��T − t�2 − s2y1�t�

2

+ 1�t�x2�t� + 2�t�c1�t� + �1�t�y2�t� + �2�t�c2�t�� (20)

and the initial value is

��x1�0�� y1�0�� = − 1
4�

(
x1�0� + y1�0�

)2

 (21)

In the Hamiltonian above, x1�t�� x2�t�� y1�t�, and y2�t� are
state variables; 1�t��2�t���1�t�, and �2�t� are costate vari-
ables (2�t� and �2�t� are also called switching functions); and
c1�t� and c2�t� are the control variables to be determined.

Notice that the Hamiltonian is linear in control variables
c1�t� and c2�t�. The building blocks of the optimal control
can only be a bang-bang control (at any instant, a single
agent claims all proceeds) or a singular control (the man-
ager and chef split the cash flow in a fixed proportion).18

Specifically, we have

c1�t� = 0� c2�t� = 0 if 2�t� < 0� �2�t� < 0�

c1�t� = b� c2�t� = 0 if 2�t� ≥ 0� 2�t� > �2�t��

c1�t� = 0� c2�t� = b if �2�t� ≥ 0� �2�t� > 2�t�� and

c1�t� = s1
s1 + s2

b� c2�t� = s2
s1 + s2

b if 2�t� = �2�t� ≥ 0


We determine switching functions 2�t� and �2�t� using the
following dynamics:

̇1�t� = − �H

�x1�t�
= −s1b�T − t�2 + 2s1x1�t��

1�0� = −���x1�0�� y1�0��
�x1�0�

= 1
2�

�x1�0� + y1�0���

̇2�t� = − �H

�x2�t�
= −1�t��

2�0� = 0�

(22)

and

�̇1�t� = − �H

�y1�t�
= −s2b�T − t�2 + 2s2y1�t��

�1�0� = −���x1�0�� y1�0��
�y1�0�

= 1
2�

�x1�0� + y1�0���

�̇2�t� = − �H

�y2�t�
= −�1�t��

�2�0� = 0


(23)

18
Claim. If 2�t� = �2�t� ≥ 0, we have c1�t� = �s1/�s1 + s2��b and c2�t� =

�s2/�s1 + s2��b.
Proof. If 2�t� = �2�t� ≥ 0, we have c1�t�+ c2�t� = b. Define ��t� ≡

2�t�−�2�t� = 0; then all the derivatives of ��t� equal zero. In partic-
ular,

....
� �t� = 0 yields c1�t� = �s1/�s1 + s2��b. This concludes the proof.

By (22) and (23), the switching functions have initial val-
ues of zero: 2�0� = �2�0� = 0. Lemma 6 below shows that
2�t� and �2�t� dip first (̇2�0� < 0 and �̇2�0� < 0). They then
increase and cross zero from below (Lemmas 7 and 8). The
two switching functions cross zero at the same moment if
and only if s1 = s2, which is the case discussed in Proposi-
tion 1. Define td = inf�t > 0�2�t� = �2�t� ≥ 0�. The crossing
point td is shown to be unique. Additionally, 2�t� = �2�t�
remains positive after td given the convexity of 2�t� and
�2�t�. Hence, the cash allocation rule specified in Proposi-
tion 1 is optimal. �

Because 2�t� = �2�t� for any t ∈ �0�T � when s1 = s2, we
focus on conditions for 2�t� in the remainder of the proof.

Lemma 6. ̇2�0� < 0.

Proof. By the definitions of x1�0� and y1�0�, we have

̇2�0� = −1�0� = − 1
2�

�x1�0� + y1�0�� ≤ 0


We prove by contradiction that ̇2�0� < 0. Suppose not.
Then x1�0� + y1�0� = 0 implies that c1�t� = c2�t� = 0 for any
t ∈ �0�T �. Thus, x1�t� = y1�t� ≡ 0, which implies that
̈2�t� = −̇1�t� = s1b�T − t�2 > 0. Given that 2�0� = 0 and
̇2�0� = 0, we have 2�t� > 0 for any t ∈ �0�T �. But recall that
2�t� ≡ �2�t�, we have c1�t� = c2�t� = 1

2b for any t ∈ �0�T �;
a contradiction! �

Lemma 7. ̈2�t� > 0 for any t ∈ �0�T �.

Proof. By the definition of x1�t�, we have

̈2�t� = −̇1�t� = s1b�T − t�2 − 2s1x1�t� ≥ 0


We prove by contradiction that ̈2�t� > 0. Suppose not. Then
there exists t ∈ �0�T � such that ̈2�t� = �̈2�t� = 0, which
implies that x1�t� = y1�t� = 1

2b�T − t�2. This contradicts the
condition of x1�t� + y1�t� ≤ 1

2b�T − t�2. �

Lemma 8. There exists a unique td ∈ �0�T � such that the
switching function crosses zero at td ; i.e., 2�td� = 0, and stays
positive afterward; i.e., 2�t� > 0 for t > td .

Proof. By Lemmas 6 and 7, 2�t� starts at zero, dips first,
and crosses zero from below at td > 0; i.e., 2�td� = 0. We
first prove by contradiction that ̇2�td� > 0, then show the
existence of a unique td ∈ �0�T �. Suppose ̇2�td� ≤ 0. Given
that ̇2�0� < 0, and ̈2�t� > 0 for any t ∈ �0�T �, we have
̇2�t� < 0 for t ∈ �0� td�. Given 2�0� = 0, we have 2�td� < 0;
a contradiction!

Given that 2�td� = 0, ̇2�td� > 0, and ̈2�t� > 0 for any
t ∈ �0�T �, we have 2�t� > 0 for t > td . When s1 = s2, 2�t� =
�2�t� for any t ∈ �0�T �. Thus, the control variables are

{
c∗
1�t� = c∗

2�t� = 0 if t < td�

c∗
1�t� = c∗

2�t� = 1
2b otherwise.

The state variable x1�t� is

x1�t� = 1
2

s1
s1 + s2

b
(
�T − t�2 − �td − t�2

)
if t ≤ td
 (24)
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Substituting (24) into (22), we have the dynamics and ini-
tial condition of the costate variable 1�t� as

̇1�t� = − s1s2
s1+s2

b�T −t�2− s21
s1+s2

b�td −t�2 if t≤ td� and

1�0� = 1
2�

(
x1�0�+y1�0�

)= 1
4�

b�T 2−t2d�


(25)

Substituting (25) into (22), we rewrite the switching func-
tion 2�t� for t ≤ td as

2�t� = − 1
4�

b�T 2 − t2d�t + 1
12

s1s2
s1 + s2

b�6T 2t2 − 4Tt3 + t4�

+ 1
12

s21
s1 + s2

b�6td
2t2 − 4tdt3 + t4�


The condition that 2�td� = 0 yields either td = 0 or

Q�td� ≡ 2t3d − 2Tt2d + 3T 2td − 3
�s1

�T 2 − t2d� = 0
 (26)

Because

Q�td � td = 0� = − 3
�s1

T 2 < 0�

Q�td � td = T � = 3T 3 > 0� and

Q′�td� = 6�td − 1
3

T �2 + 7
3

T 2 + 6
�s1

td > 0�

there exists a unique solution td ∈ �0�T � to (26). �

The proof of Proposition 2 is similar to the proof of
Proposition 1. It applies the results of Lemmas 9–11, which
are stated below the proof.

Proof of Proposition 2
For notational convenience, define x1�t� ≡ ∫ T

s=t

∫ T

	=s c1�	� d	 ds.
Substituting the IC constraints of the entrepreneur and the
manager (10) into the objective function (9) and omitting the
terms independent of c1�t�, we have19


� = − 1
4�

x1�0�
2 + s1b

∫ T

t=0
x1�t��T − t�2 dt

− s1

∫ T

t=0
x1�t�

2 dt
 (27)

Define x2�t� = ẋ1�t�; then ẋ2�t� = c1�t�. The optimization
problem is transformed to:

Problem 2M. Choose 0≤ c1�t� ≤ b for t ∈ �0�T � to maximize

� given in (27) subject to system dynamics

ẋ1�t� = x2�t�� ẋ2�t� = c1�t��

and terminal conditions

x1�T � = 0� x2�T � = 0


19 Now the expected social surplus is � = 
� + �bT − 1
2�bT 2 −

1
6m1bT 3 + �1/16��b2T 4�. In the remainder of the proof, 
� is referred
to as the expected social surplus.

Figure A.1 The Switching Function �2�t� and the Control c1�t�

(Payments to the Manager) Over the Project’s Life Span

td

t0 T

T

td

0

0

b

0

�2(t)

c1(t)

t

Notes. The switching function �2�t� is convex. It starts from zero, dips first,
crosses zero from below at the critical date td ∈ �0� T �, and remains positive
after td . Correspondingly, c1�t� is zero (the minimum payment) prior to td
and is b (the maximum payment) afterward.

The Hamiltonian is

H = s1bx1�t��T − t�2 − s1x1�t�
2 + 1�t�x2�t� + 2�t�c1�t��

and the initial value is

��x1�0�� = − 1
4�

x1�0�
2


Because the Hamiltonian is linear in the control variable
c1�t�, we have20

c1�t� =
{
0 if 2�t� < 0�

b if 2�t� ≥ 0


The switching function 2�t� is determined by the following
dynamics:

̇1�t� = − �H

�x1�t�
= −s1b�T − t�2 + 2s1x1�t��

1�0� = −���x1�0��

�x1�0�
= 1

2�
x1�0��

̇2�t� = − �H

�x2�t�
= −1�t�� and

2�0� = 0


(28)

As in the proof of Proposition 1, we prove that c1�t� = 0 for
t < td in three steps. Lemma 9 shows that ̇2�0� < 0.
Lemma 10 shows that ̈2�t� > 0 for any t at which 2�t� < 0.
Essentially, 2�t� is convex; it starts at zero and becomes neg-
ative first, then crosses zero from below. Lemma 11 shows
that there exists a crossing point td ∈ �0�T � such that 2�td� =
0, and this crossing point is unique. Additionally, ̇2�td� > 0;
thus, we have 2�t� > 0 for t > td . Hence, the cash allocation
rule specified in Proposition 2 is optimal. �

The switching function 2�t� and the manager’s payment
c1�t� are depicted in Figure A.1.

Lemma 9. ̇2�0� < 0.

20 If 2�t� = 0, all the derivatives of 2�t� equal zero. In particular,....
2�t� = 0 yields c1�t� = b.
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Proof. Given that c1�	� ≥ 0 for any 	 ∈ �0�T �, we have

̇2�0� = −1�0� ≡ − 1
2�

∫ T

s=0

∫ T

	=s
c1�	� d	 ds ≤ 0


We prove by contradiction that ̇2�0� < 0. Suppose ̇2�0� = 0.
By (28), we have

1
2�

x1�0� = 1
2�

∫ T

s=0

∫ T

	=s
c1�	� d	 ds = 0�

which requires that c1�	� = 0 for any 	 > 0. Thus, we have
x1�t� = 0 for any t > 0. By (28), this implies

̈2�	� = −̇1�	� = s1b�T − 	�2 > 0


Thus, 2�t� is convex. Additionally, we have 2�0� = 0 and
̇2�0� = 0. The convexity of 2�t� yields 2�	� > 0 for any
	 > 0, which in turn requires that c1�	� = b for any 	 > 0; a
contradiction! �

Lemma 10. ̈2�t� > 0 for any t at which 2�t� < 0.

Proof. Given that c1�	� ≤ b for any 	 ∈ �0�T �, we have

̈2�t� = −̇1�t� = s1b�T − t�2 − 2s1x1�t�

= s1b�T − t�2 − 2s1
∫ T

s=t

∫ T

	=s
c1�	� d	 ds ≥ 0


We prove by contradiction that ̈2�t� > 0 for any 2�t� < 0.
Suppose ̈2�t� = 0 for some t at which 2�t� < 0; then by
(28), we have c1�	� = b for any 	 ∈ �t� T �. However, given
that 2�t� < 0, there exists � > 0 such that 2�	� < 0 for any
	 ∈ �t� t + ��. This requires that c1�	� = 0 for 	 ∈ �t� t + ��;
a contradiction! �

Lemma 11. There exists a unique td ∈ �0�T � such that the
switching function crosses zero at td ; i.e., 2�td� = 0; and remains
positive afterward; i.e., 2�t� > 0 for t > td .

Proof. By Lemmas 9 and 10, we have ̇2�0� < 0, and
̈2�t� > 0 for any t at which 2�t� < 0. Thus, 2�t� starts
from zero, becomes negative first, and crosses zero from
below. Denote td = inf �t > 0� 2�t� ≥ 0�. We prove by contra-
diction that ̇2�td� > 0. Suppose not. Then ̇2�td� ≤ 0. Given
that ̇2�0� < 0 and ̈2�t� > 0 for 2�t� < 0 (i.e., t ∈ �0� td�), we
have ̇2�t� < 0 for any t ∈ �0� td�. Given that 2�0� = 0, we
have 2�td� < 0; a contradiction!

The combination of 2�td� = 0, ̇2�td� > 0, and ̈2�t� ≥ 0 for
t ∈ �0�T � implies 2�t� > 0 for t > td . Thus, we have c1�t� = 0
for t < td and c1�t� = b for t ≥ td . The state variable x1�t�
satisfies

x1�t� = 1
2b��T − t�2 − �td − t�2� if t ≤ td
 (29)

Substituting (29) into (28), we derive the switching function
2�t� for t ≤ td as

2�t� = − 1
4�

b�T 2 − t2d�t + 1
12

s1b
(
6t2dt2 − 4tdt3 + t4

)



The condition that 2�td� = 0 yields td = 0 or

P�td� ≡ t3d + 1
�s1

t2d − 1
�s1

T 2 = 0
 (30)

There is a unique td ∈ �0�T � that solves (30) because

P�td � td = 0� = − 1
�s1

T 2 < 0�

P�td � td = T � = T 3 > 0� and

P ′�td� = 3t2d + 2
�s1

td > 0 for td > 0
 �

Efficiency Loss in the Three-Sided Moral Hazard Model
Applying the first-order conditions directly to the expected
social surplus given in (2) yields the first-best effort choices
as

e
fb
0 = 1

4�
bT 2 and e

fb
i �t� = mi

4ki

b�T − t�2 for i = 1�2


Substituting these first-best effort levels into (2), we obtain
the first-best social surplus as

�fb =
(

bT − 1
2

�bT 2− 1
6

�m1+m2�bT 3+ 1
16�

b2T 4
)

+ 1
10

s1b
2T 5


Substituting the second-best effort given in (7) into (2), we
obtain the second-best social surplus as

�sb =
(

bT − 1
2

�bT 2 − 1
6

�m1 + m2�bT 3 + 1
16�

b2T 4
)

− 1
16�

b2�T 2 − t2d�2

+ s1b
2
(

3
40

T 5 − 1
12

T 2t3d + 1
24

Tt4d − 1
30

t5d

)



The welfare loss is thus

�fb − �sb = 1
16�

b2�T 2 − t2d�2

+ s1b
2
(

1
40

T 5 + 1
12

T 2t3d − 1
24

Tt4d + 1
30

t5d

)
�

which is increasing with the severity of the agents’ moral
hazard problems, �1/�� s1�. �

Efficiency Loss in the Sequential Compensation Model
Applying the first-order conditions directly to the expected
social surplus (9), we have the first-best effort choices as

e
fb
0 = 1

4�
bT 2 and e

fb
1 �t� = m1

4k1
b�T − t�2


Substituting these first-best effort levels into (9), we obtain
the first-best social surplus as

�fb = bT − 1
2

�bT 2 − 1
6

m1bT 3 + 1
16�

b2T 4 + 1
20

s1b
2T 5


Substituting the second-best effort given in (13) into (9), we
obtain the second-best social surplus as

�sb = bT − 1
2

�bT 2 − 1
6

m1bT 3 + 1
8�

b2t2dT 2

− 1
16�

b2t4d + 1
20

s1b
2�T 5 − t5d�


The welfare loss is

�fb − �sb = 1
16�

b2�T 2 − t2d�2 + 1
20

s1b
2t5d > 0�

which is increasing as the severity of the moral hazard prob-
lems increases, (1/�, s1). �
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Efficiency Loss in the Proportional Sharing Model
Applying the first-order conditions directly to the expected
social surplus (15), we have the first-best effort choices as

e
fb
1 �t� = m1

4k1
b�T − t�2 and e

fb
2 �t� = m2

4k2
b�T − t�2


Substituting these first-best effort levels into (15), we obtain
the first-best social surplus as

�fb = bT − 1
6 �m1 + m2�bT 3 + 1

20 �s1 + s2�b
2T 5


Substituting the second-best effort given in (18) into (15),
we obtain the second-best social surplus as

�sb = bT − 1
6

�m1 + m2�bT 3 + 1
20

s21 + s1s2 + s22
s1 + s2

b2T 5


Thus, the welfare loss is

�fb − �sb = 1
20

s1s2
s1 + s2

b2T 5�

which is increasing as the severity of the moral hazard prob-
lems, (s1, s2), increases. �

Proportional Sharing Model with Three Agents
In a case with three agents all exerting effort over time, cash
allocations to the agents (for t ∈ �0�T �) are

c∗
1�t� = s1s2 + s1s3 − s2s3

s1s2 + s1s3 + s2s3
b� c∗

2�t� = s1s2 + s2s3 − s1s3
s1s2 + s1s3 + s2s3

b�

and c∗
3�t� = s1s3 + s2s3 − s1s2

s1s2 + s1s3 + s2s3
b�

where c∗
i �t� (for i = 1�2�3) is the amount of proceeds allo-

cated to agent i at time t, which increases with the severity
of the agent’s moral hazard, si.
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