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We derive necessary and sufficient conditions for a linear equilibrium in three types of competitive
market making models: Kyle type models (when market makers only observe aggregate net order
flow), Glosten–Milgrom and Easley–O’Hara type models (when market makers observe and trade
one order at a time), and call markets models (individual order models when market makers observe
a number of orders before pricing and executing any of them). We study two cases: when privately
informed (strategic) traders are symmetrically informed and when they have differential information.
We derive necessary and sufficient conditions on the distributions of the random variables for a linear
equilibrium. We also explore those features of the equilibrium that depend on linearity as opposed
to the particular distributional assumptions and we provide a large number of examples of linear
equilibria for each of the models.
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1. INTRODUCTION

Models of market making are used to understand the effects of different exchange struc-
tures on market depth, price volatility, informativeness of prices, and the ability of
informed traders to exploit their private information.1 They are also important building
blocks for the study of other questions whose answers depend, in part, on what hap-
pens in the market for the firm’s asset.2 Most of these analyses focus on a closed-form,
usually linear, solution to the embedded model of stock trading. In this paper, we seek
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necessary and sufficient conditions for a linear equilibrium in most standard models of
market making with risk neutral agents and independent random variables. This approach
is similar to that of Ross (1978) who provides necessary and sufficient conditions on dis-
tributions for the mutual fund separation theorem and to that of Chamberlain (1983) who
provides necessary and sufficient conditions on distributions so that preferences can be
characterized by mean-variance utility functions, meaning that asset prices follow the
CAPM.
Most models in the market microstructure literature are either Kyle type models that

follow Kyle (1985) or Glosten–Milgrom–Easley–O’Hara (henceforth GMEO) type mod-
els that follow Easley and O’Hara’s (1987) extension of the original Glosten and Milgrom
(1985) model. In formulations that follow Kyle (1985, 1986a, 1986b), market makers
observe aggregate net order flow and then set prices. All closed-form solutions are lin-
ear and virtually all assume that the random variables are independent and normally
distributed (the exception being Foster and Viswanathan 1993, who study elliptically
distributed but not independent random variables). Most results concerning the effect of
exchange structure and most analyses based on Kyle’s model rely on the implications
from these linear equilibria.
Given this background, our paper has two aims. Our first aim is to find necessary

and sufficient conditions for linear equilibria in Kyle type models without imposing the
assumption of normality.3 Next, we will show that many comparative statics derived in
previous work (e.g., regarding price sensitivity, the number of strategic traders, and the
variability of exogenous trading) derive from the linearity of equilibrium and not from
any primitive distributional assumptions.
Our second aim is to find general conditions for linear equilibria in other models

of market making. Delineating conditions under which linear equilibria can obtain in
other market structures may help us understand differences between market structures
and possibly lead to alternative models of market structures. We consider the issue of
the existence of linear equilibrium in two alternative market structures: (i) the GMEO
formulation in which traders arrive and trade one at a time and (ii) a model of call markets
where market makers observe individual orders but not the identity of the individual
submitting the order (henceforth IO).4 From a practical standpoint, this formulation is
closer to real world markets than the commonly used Kyle approach.5

We employ a game-theoretic model that has all of these formulations as special cases.
There are risk-neutral, privately informed traders who submit market orders. Exogenous
traders submit market orders for unmodeled reasons, represented by a vector of random
variables, �u, not taken to be independent. There are also risk-neutral market makers who
observe something about the vector of submitted orders and then compete by choosing
prices at which they will execute the orders.6 The standard formulations are obtained
by making different assumptions on what market makers observe about the submitted
orders before they price them. Kyle type models are obtained by assuming that market

3 In a paper subsequent to ours but independent of our work, Noldeke and Troger (1998) derive some similar
results. They obtain a result similar to our Theorem 3.1 and a somewhat stronger result than Theorem 3.5.

4 Corb (1993) independently analyzed equilibria in this type of model, specifically focusing on nonlinear
equilibria.

5 Models of market making in which the risk-neutral strategic trader observes the liquidity traders’ orders
prior to submitting her own have been studied in Kyle (1989), and Kyle and Vila (1991). Rochet and Vila
(1994) provide conditions for existence and uniqueness of equilibrium in such models. Since the strategic
trader’s problem is so different in such models, their work is very different but complementary to ours.

6 Note that because we restrict our attention to risk-neutral traders and market makers, we leave open the
question of whether there are other combinations of preferences and distributions that support linear equilibria.
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makers observe aggregate net order flow (the order imbalance), choose prices, and then
execute every order. GMEO type models are obtained by assuming that market makers
observe one order (but do not know whose), price that order, and then execute only that
order. The IO model is obtained by assuming that market makers observe every order
submitted, choose prices, and then execute every order.
We provide necessary and sufficient conditions on probability distributions for a linear

equilibrium in all three formulations when strategic traders see the same signal (are
symmetrically informed). When strategic traders are differentially informed, we obtain
necessary and sufficient conditions for GMEO and IO type models but only sufficient
conditions for Kyle type models.7 We show that the conditions also depend on whether
the number of traders who have private information and submit orders is exogenous.
In all cases, necessary and sufficient conditions can be expressed either in terms of the
induced probability distribution of strategic and exogenous traders’ orders or in terms of
the underlying distribution of strategic traders’ signals and the distribution of exogenous
traders’ orders. The former usually provides a much more intuitive version but suffers
from the defect that it is not in terms of exogenous distributions.
In Kyle type models, with N symmetrically informed strategic traders, we show that

there is a linear equilibrium if and only if the aggregate order from strategic traders has
the same distribution as the sum of N i.i.d. random variables each equal in distribution
to u, the exogenous traders’ aggregate net order. We use these conditions to indicate
which results depend on the restriction to a linear equilibrium and which depend on
the normality assumptions. We show that if the distributions admit a linear equilibrium,
there is only one and the intercept and slope depend only on the first two moments
of the distributions (when they exist).8 Thus, for a fixed number of strategic traders,
the results in the literature do not depend on the normality assumptions at all. Also,
we provide examples where different combinations of distributions lead to the same
linear equilibrium pricing equation and compute a wide variety of examples compiled in
Table 3.1. Unfortunately, results are less robust when there must be a linear equilibrium
for an endogenous number of strategic traders—a linear equilibrium for every possible
number of strategic traders. As we show, this implies that the signals observed by strategic
traders, s and u, must be stable random variables9 or normal if one also requires finite
second moments.10

We also derive sufficient conditions when strategic traders see different signals. There
is no nice interpretation but we show how to use these sufficient conditions to compute
examples using the class of stable distributions. We find that the normal example behaves

7 Essentially, in Kyle type models, when strategic traders are differentially informed, they do not know what
signals other strategic traders saw. As a result, they play a game of incomplete information even if the price
is a linear function of order flow. In such circumstances, we can find an equilibrium in which each strategic
trader’s order is a linear function of his private information but cannot guarantee that there are not other sets
of trading strategies that would support a linear price function.

8 We also provide examples with stable random variables, a class introduced to finance by Mandlebrot
(1963) and Fama (1963) as alternative distributions for stock returns. (Their work was extended by McCulloch
1978 who showed how to handle continuous time processes with stable increments.) Other than the normal,
these distributions do not have finite second moments and play a major role later in our analysis.

9 The class of stable distributions is the set of limiting distributions for normed sums of i.i.d. random
variables. The Normal, Pareto, Lévy, and Cauchy distributions are examples of stable distributions.

10 If strategic traders make all decisions after learning their private information (such as when they weigh
the benefits from trading against the costs of violating insider trading laws), finite second moments are not
needed. However, if strategic traders make decisions prior to learning their private information (such as when
deciding whether to acquire private information) their objective function is not well defined unless second
moments exist. Since the normal distribution is the only stable distribution with finite second moments, one
requires normality to obtain a linear equilibrium in these cases.
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differently than the other stable distribution examples. With normality, there is a linear
equilibrium for any number of strategic traders, they trade more aggressively the more
of them there are and the slope of the price function declines in the number of strategic
traders. If the random variables are stable but not normal, there are a maximum number
of strategic traders for which a linear equilibrium exists.
In GMEO type models, necessary and sufficient conditions for a linear equilibrium are

much simpler: (i) each strategic trader’s order must have the same distribution as each
exogenous trader’s order and (ii) the probability that the order executed is submitted
by a strategic trader is one-half.11 The first condition implies that the existence of a
linear equilibrium does not depend on whether strategic traders are symmetrically or
differentially informed because only one strategic trader’s order is executed. The second
condition implies that the existence of a linear equilibrium does not depend on whether
the number of strategic traders is endogenous or exogenous unless one ties the probability
that the order is placed by a strategic trader to the proportion of strategic traders. Again,
we show that if linear equilibrium exists, there is only one, and we characterize the
intercept and slope. We also provide examples of different combinations of distributions
that lead to the same price function and compute Table 4.1 for the same set of examples
as we did for Kyle type models.
In IO type models, we show that any distributional conditions that support a linear

equilibrium in an IO type model support one in Kyle type models because it is assumed
that market makers learn nothing from the position of an order in the order vector.
However, some distributions that support linear equilibria in Kyle type models will not
support linear equilibria in IO models. Further, our results for IO type models depend
heavily on whether strategic traders can split their orders. If they cannot, then there is
a linear equilibria in an IO model if and only if there is one strategic and one exoge-
nous trader and their orders have the same distribution and then our results for Kyle and
GMEO type models carry over to IO type models.12 We also derive necessary and suffi-
cient conditions for a linear equilibrium in IO type models for one strategic trader when
she is permitted to submit multiple orders.13 We show that there is a linear equilibrium
if and only if the strategic trader’s total order has the same distribution as the aggregate
net order of the exogenous traders—exactly the same condition as we obtained in Kyle
type models and so all of our results for Kyle type models carry over in this case.
Finally, we note that techniques can be applied to other areas where linear equilibria

are commonly used. An example would be the literature in industrial organization deal-
ing with information sharing that relies heavily on linear conditional expectations.14 Our

11 Intuitively, the first condition arises because only one order is executed and it must either be placed by
a strategic trader or by an exogenous trader. The second condition is less obvious. Intuitively, if it is more
likely (less likely) than not that the order is placed by a strategic trader, then the market makers’ optimal price
adjustment (the slope of the price function) to any realized order flow is always greater than (less than) that
conjectured by the strategic trader because it is more likely (less likely) that the order is informative. Thus, it
is only when the order is equally likely to have been placed by a strategic trader or an exogenous trader that
market makers adjust price by exactly what was conjectured by the strategic trader.

12 With one strategic and one exogenous trader, conditions for a linear equilibrium are the same as in Kyle
type models, which implies that all of our results on such equilibria carry over to the linear equilibria in
IO models. Further, if the probability that a strategic trader’s order is executed equals the fraction of strategic
traders, then the restriction to one strategic and one exogenous trader makes the linear equilibria in Kyle,
GMEO, and IO type models the same.

13 We restrict attention to one strategic trader because, otherwise, when strategic traders can split their orders,
the analysis of how they split them in equilibrium takes a prominent role in the analysis. Since it does not in
any of the other models, we leave this for future work.

14 See, for example, Vives (1989) or Hwang (1993) and the references therein.
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approach provides a general method to characterize distributions that yield linear con-
ditional expectations and simultaneously satisfy the conditions for a linear equilibrium
implied by the theory.
The remainder of the paper is organized as follows. Section 2 is a description of the

general model. Section 3 specializes it to Kyle type models of market making, Section 4
deals with GMEO type, and Section 5 with individual order type models. Section 6
contains our conclusions. Most proofs are in the Appendix.

2. THE MODEL

There are three types of risk neutral agents: exogenous traders, strategic traders, and
market makers. We assume that all random variables have finite expectations in order to
evaluate the agents’ objective functions. The agents interact in a single-period market for
a single traded asset whose terminal value is v per share. The market is described by the
following order of play. Exogenous and strategic traders submit market orders without
knowing the orders submitted by other traders. There are no restrictions on short sales
and orders can be positive or negative.15 Then, market makers observe something about
the submitted orders and choose prices. They are required to stand ready to execute any
or all of the order flow at their chosen prices. The orders are then executed at the most
favorable price for the traders. This game-theoretic structure has as special cases Kyle
type, GMEO type, and the individual order models that we wish to analyze.16 Which
version is studied is determined by what market makers observe about the submitted
orders prior to pricing them.
More specifically, in the model there are L exogenous traders who have no private

information and who place market orders for unmodeled reasons. Hence each exogenous
trader’s order is a random variable ui , for i = 1, 2, . . . , L. Here ui represents the number
of shares demanded by the ith exogenous trader. Let u = ∑L

i=1 ui be the total orders
from exogenous traders. There are N ≥ 1 strategic traders each of whom receive a signal
(their private information about the terminal value of the asset), si (which need not be v
and may not be identical across strategic traders). Based on si , each strategic trader
submits a market order xi (i.e., he cannot condition on the price at which the trade will
execute). Both the exogenous trader orders and strategic trader orders are placed in the
first stage. Finally, there are K ≥ 2 market makers who act like “Bertrand” competitors.
In the second stage, these market makers observe some information about the order flow
and base their prices on this information. We assume that for all j , uj is independent
of (v, s1, . . . , sN).
We have a game of incomplete information because market makers do not know the

signals strategic traders receive and so we seek Bayes–Nash equilibria. We focus on
linear equilibria because we wish to characterize necessary and sufficient conditions
for a linear Bayes–Nash equilibrium. By linear, we mean market makers choose price
functions that are linear in what they observe about the submitted orders. Finally we
require that the Bayes–Nash equilibrium be sequentially rational, sometimes referred to
as a Perfect Bayes–Nash equilibrium.17

15 We adopt the convention that if the order is positive, the trader wishes to buy and, if negative, wishes to
sell shares.

16 See also Bagnoli and Holden (1994).
17 For additional details, see Fudenberg and Tirole (1991) or Gibbons (1992).
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3. KYLE TYPE MODELS

Here, market makers observe aggregate net order flow; that is, if (x1, . . . , xN, u1, . . . uL)

is the vector of submitted orders, then market makers observe z ≡ ∑N
i=1 xi + u.

Initially we will consider models where the N strategic traders observe the same infor-
mation s = si ∀i. Then we will consider models where the N strategic traders observe
differential information—that is, the si and sj are different for traders i and j .

3.1. An Exogenous Number of Symmetrically Informed Strategic Traders

The number of strategic traders, N , is exogenously given. All strategic traders observe
the same signal si = s, where E[v | s] = s, prior to submitting their market orders.18 With
a two-stage game, one starts at the last stage and works backward to find sequentially
rational Bayes–Nash equilibria. In the last stage, risk-neutral market makers select prices
to maximize their expected profits given their observation of the realized aggregate net
order flow z. A market maker’s expected profit is E[(p − v) z

k
| z], if he is one of the

k ≤ K market makers quoting the most favorable price for traders. If aggregate net order
flow is positive (negative), then a market maker executes his portion of it when his ask
is lowest (bid is highest). Using the standard proof technique for “Bertrand” games, the
unique Nash equilibrium is for market makers to offer p(z) = E[v | z] for equilibrium
values of z. Because market makers condition on z, they use the strategies chosen by
strategic traders and so this identification of the price charged equaling the conditional
expected value of a share embeds a strategy function for each strategic trader.
Even though market makers infer (correctly, in equilibrium) the strategic traders’ strate-

gies, their aggregate order, X, is still random because market makers do not observe the
private signal s that is known only to the strategic traders. If the support of X and/or
the support of u permits aggregate net order flow to be any real number, then every
conceivable value of aggregate net order flow can arise on the equilibrium path—there
are no off-the-equilibrium paths.19

Because we seek necessary and sufficient conditions for a linear equilibrium, we seek
conditions such that each market maker’s best reply is linear in z with a positive slope.
Given this, strategic traders infer that20 p(z) = µN + λNz. The ith strategic trader’s
problem is

max
xi

E[(v − p(z))xi | s] ≡ max
xi

(s − µN − λN(xi + X∼i + E[u]))xi,

where xi is the order she places, u is the exogenous traders’ aggregate net order, and
X∼i is the sum of the orders placed by other strategic traders. Her objective function
was simplified by noting that E[v | s] = s and E[u | s] = E[u] because u is independent
of s. The first-order condition is

xi = s − µN − λN(X∼i + E[u])
2λN

.(3.1)

The second-order condition is met if λN > 0, which we have imposed.
18 This is without loss of generality. In the more general case where E[v | s] = ks we can rescale the signal

s so that k = 1.
19 If there are, then we must specify off-the-equilibrium path beliefs for market makers. When the support of

the distribution is an interval (the case considered in this paper), we assume that if the market makers observe
an off-the-equilibrium aggregate net order, then they set prices so that strategic traders never find it optimal
to buy (sell) at these prices. Extensions to cases where the support of the distribution is not an interval are
beyond the scope of the current paper.

20 We subscript µ and λ to indicate that, in Kyle type models, market makers know the number of strategic
traders and so the equilibrium price function can depend on N .
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Since strategic traders are symmetrically informed, we can compute Bayes–Nash equi-
libria by solving for Nash equilibria. Summing the first-order conditions and solving
show that there is a unique Nash equilibrium in which strategic traders choose the same,
pure strategy21

x(s) = s − µN − λNE[u]

(N + 1)λN

≡ βN(s − µN − λNE[u]).(3.2)

Note that each strategic trader’s order is a linear function of her private information.
Hence, when computing the market makers’ conditional expected value of the asset
given z, we must impose that the conjectured strategy for strategic traders is linear
in s. If we do not, then we will not have an equilibrium. Thus, we seek necessary and
sufficient conditions for the market makers’ conditional expectation, E[v | z] to be linear
when (3.2) describes a strategic trader’s order. These conditions can be found by applying
a lemma from Ferguson (1958, Lem. 1).22

Ferguson’s Lemma. For jointly distributed random variables Y0, Y1, . . . , Yn, each
with mean zero, the following are equivalent:

(i) E[Y0 | Y1, Y2, . . . , Yn] =
n∑

i=1
biYi a.e.,

(ii) ∂

∂t0
φY0,Y1,..., Yn

(t0, t1, . . . , tn)

∣∣∣
t0=0

=
n∑

i=1
bi

∂

∂ti
φY1,..., Yn

(t1, . . . , tn),

where φw is the characteristic function for the random vector w.23

Since the lemma is for mean zero random variables, we transform ours by subtracting
their means, denoted by a “ ˆ ” above the random variable. Since we assumed that
E[v | s] = s, then E[v] = E[s] and so E[v | z] is linear if and only if E[v̂ | ẑ] = λN ẑ.
Further, using the fact that the joint distribution of v, s, z can be written as a product of
the joint distributions of v, s and s, z, one can show that E[v | z] = E[s | z]. Hence, we
seek necessary and sufficient conditions for E[ŝ | ẑ] = λN ẑ.
Toward this end, we first impose the following technical condition.24 In all of our

discussion, we will assume that this condition holds.

Technical Condition. Suppose there are N strategic traders. The characteristic func-
tion of ŝ is strictly zero outside the interval (−U,U) (where U is possibly∞) and satisfies
the following smoothness restrictions on (−U,U): If φŝ(t)=0, then φŝ() ∈ CN in an open
neighborhood of t and φi

ŝ
(t) �= 0 for i = 1, . . . , N . An identical condition is satisfied

by û.

21 Note that we are not requiring or assuming that strategic traders adopt the same trading strategy. We are
showing that the unique equilibrium has the strategic traders choosing the same trading strategy given that the
equilibrium price function is a linear function of the aggregate net order flow.

22 He describes his lemma as corresponding to a lemma in Fix (1949). See also Blake and Thomas (1968).
23 The characteristic function is an alternative way to characterize a random variable’s distribution function.

There are standard inversion formula that allow one to obtain one from the other (see Lukacs 1960 for
details). In our context, the characteristic function of Y0, Y1, . . . , Yn, φY0 ,Y1 ,..., Yn

(t0, t1, . . . , tn) = E[it ·Y ], where
t · Y ≡ ∑n

j=0 tj Yj .
24 We thank Georg Noldeke and Thomas Troger for bringing this issue to our attention.



8 mark bagnoli, s. viswanathan, and craig holden

The technical condition above restricts the characteristic function to be continuously
differentiable of order N and requires nonzero derivatives up to order N when the char-
acteristic function is zero.25 Without this smoothness condition, one can create examples
that violate Theorem 3.1 below. We provide one such example in the Appendix. However,
this example is somewhat pathological (it does not correspond to any standard distribu-
tion function). Most distributions that are considered in practice satisfy the smoothness
condition that we impose.
In independent work, Noldeke and Troger (1998) impose the technical condition that

the moment generating function of the relevant random variables exists in a neigh-
borhood of 0. This implies that all the moments exist and are finite (see Billingsley
1979, Sec. 30) and that the behavior of the characteristic function around zero com-
pletely characterizes the random variable. From a standard theorem (e.g., see Renyi
1970), if the first n moments exist, then the characteristic function is differentiable n

times. Hence, Noldeke and Troger’s condition assumes that the characteristic function is
infinitely differentiable.26

Definition of N -fold average. A random variable y1 is an N -fold average of
another random variable y2 if y1 has the same distribution as the average of N indepen-
dent random variables each with the same distribution as y2.

Theorem 3.1. For fixed N , there is a linear equilibrium if and only if x̂ and û have
finite expectations and x̂ is an N -fold average of û.27

We use (3.2) to provide conditions on the exogenous distributions of s and u and com-
plete the analysis by solving for µN and λN .

Theorem 3.2. For fixed N , there is a linear equilibrium if and only if ŝ and û have
finite expectations and ŝ has the same distribution as (N+1)λN times the N -fold average
of û.

Proof. From Theorem 3.1, for all t , φû(t)
N = φNx̂(t) = φx̂(Nt) = φŝ((N/λN(N +

1))t), since x̂ = ŝ/((N + 1)λN). Thus, ŝ has the same distribution as (N + 1)λN times
the N -fold average of û. ✷

Theorem 3.3. For fixed N , there is only one linear equilibrium. Its intercept is
E[s]− λNE[u] and its slope is λN = 1

(N+1)βN , which is uniquely characterized by

φs(NβNt) = eiN(βNE[s]−E[u])φu(t)
N ∀t.(3.3)

If the distributions have finite second moments,

λN = Cov[s, z]

Var[z]
= 1

N + 1

√
Nσ 2s

σ 2u
,

where σ 2s ≡ Var[s] and σ 2u ≡ Var[u].

25 More generally, if the characteristic function and its first K derivatives are zero, we need that the K +1th
to the K + N th derivatives are nonzero and that the K + N th derivative is continuous.

26 Noldeke and Troger’s condition has the advantage of being independent of N , the number of strategic
traders.

27 Most proofs are in the Appendix.
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Our theorems provide four insights into the linear equilibria. First, if the distribu-
tions of the signal and exogenous trades have finite second moments, only their first
two moments affect the equilibrium price function. As a result, we will be able to find
combinations of distributions that lead to the same price function.28 Second, in standard
analyses with normality, one usually sees a proof that there is a unique linear equi-
librium. Theorem 3.3 indicates that if there is a linear equilibrium, then there is only
one—normality is unimportant. Third, the intercept, µN , is not, in general, independent
of N unless the expected value of the exogenous traders’ aggregate net orders is zero.
Finally, just as with normality, we find that, for distributions with finite second moments,
λN falls and NβN rises in N—normality is unimportant.
We close this section by considering a standard special case: each exogenous trader’s

order is independent and identically distributed.

Corollary 3.1. If there are N strategic traders and the ui’s are i.i.d., then there is
a unique linear equilibrium if and only if x̂ and û have finite expectations and x̂ is L
times the NL-fold average of ûi . Further, if the distributions have finite second moments,
ŝ has the same distribution as

√
NL(

σs
σui

) times the NL-fold average of ûi .

Proof. Since û=
∑N

i=1 ûi and the ûi are identically distributed, using Theorem 3.1, we
obtain the required result. Using Theorem 3.2 then yields the second claim. ✷

3.1.1. Examples of Linear Equilibria. First, we explain how Theorems 3.1, 3.2, and 3.3
are used to create Table 3.1, which characterizes linear equilibria for different combina-
tions of distributional assumptions. We illustrate with the well-known example of nor-
mally distributed random variables. Let u ∼ N (α, σ 2u ) and s ∼ N (ξ, σ 2s ) for means
α, ξ ∈ R and variances σ 2s , σ

2
u ∈ R+. The characteristic function of y ∼ N (a, b) is

φy(t) = eita−(t2b/2). Substituting into (3.3) and suppressing the subscripts on β and λ,
one obtains ei(Nβt)2σ 2s = eiNσ 2u t

2
for all t which can be true only if (Nβ)2σ 2s = Nσ 2u . Since

β = 1/(λ(N +1)), we obtain the well-known result that for normally distributed random
variables,

λN =
(

1

N + 1
)√

Nσ 2s

σ 2u
.

Using the characterization of the intercept in Theorem 3.3 yields the equilibrium price
function. All of the other computations summarized in Table 3.1 proceed in an analo-
gous way.29

Potentially the most important application of this approach is that it allows us to readily
illustrate that many combinations of distributions produce the same linear equilibrium.
To see this, pick a linear function, ρ(z) = µ+λz for µ ∈ R, λ > 0. For each of the first
four distributions in Table 3.1, Part A, we can select parameters for the distributions of s
and u such that the linear equilibrium price function described in Table 3.1 is the same
as ρ when N = 1. Similar exercises can be done for the remaining four distributions in
Part A as well as for the two and the remaining five in Part B.

28 A similar result has been derived by Foster and Viswanathan (1993) when (v, u) are in the elliptically
contoured class of distributions.

29 We postpone presenting examples with distributions that have no second moments until the next section.
The reason is that the most straightforward examples rely on the distributions being stable and such distributions
are central in the analysis of the next section.
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Table 3.1
Kyle Type Models With Symmetric Information

Distributions Linear equilibrium
Distribution of u and s N price function

Part A: Continuous Distributions

Normal: y ∼ N (a, b) u ∼ N (α, θ)

y, a ∈ R, b > 0 s ∼ N (ξ, γ ) any p(z) = ξ +
(

1
N+1

√
Nγ

θ

)
(z − α)

f (y) = 1√
2πb
exp

{ − (y−a)2

2b

}
Laplace: y ∼ LP(a, b) u ∼ LP(α, θ)

y, a ∈ R, b > 0 s ∼ LP(ξ, γ ) N = 1 p(z) = ξ +
(

γ

2θ

)
(z − α)

f (y) = 1
2b
exp

{ − |y−a|
b

}
Logistic: y ∼ LOG(a, b) u ∼ LOG(α, θ)

y, a ∈ R, b > 0 s ∼ LOG(ξ, γ ) N = 1 p(z) = ξ +
(

γ

2θ

)
(z − α)

f (y) = π exp
{

π(y−a)

b
√
3

}
b
√
3
(
1+exp

{
π(y−a)

b
√
3

})2
Extreme value: y ∼ EV (a, b) u ∼ EV (α, θ)

y, a ∈ R, b > 0 s ∼ EV (ξ, γ ) N = 1 p(z) = ξ + kγ

2
+ (

γ

2θ

)
(z − α)

F (y) = exp{− exp{−(y − a)/b}} k = Euler’s constant
Gamma: y ∼ G(a, b) u ∼ G(α, θ)

y ≥ 0, a, b > 0 s ∼ G(Nα, γ ) any p(z) = N

(N+1)γ (α + θz)

f (y) = exp{−yθ}yα−1θα1(α)−1

Chi–squared: y ∼ χ 2(a) u ∼ χ 2(α)

y > 0, a ∈ I+ s ∼ χ 2(Nα) any p(z) = N

N+1 (Nα + z)

f (y) = exp
{ −y

2

}
y( α−2

2 )2− α
2 1( α

2
)−1

Inverse Gaussian: y ∼ IG(a, b) u ∼ IG(α, θ)

y, a, b > 0 s ∼ IG( α

N
, θ) any p(z) = (

1
N+1

)
(nα + z)

f (y) = exp
{ − b(y−a)2

2a2y

}
(
√
b/2πy3)

Pearson Type III: y ∼ P 3(a, b, c) u ∼ P 3(α, θ, δ)

y ≥ a ∈ R, b, c > 0 s ∼ P 3(ξ, γ,Nδ) any p(z) = ξ

f (y) = ((y−a)/b)c−1 exp{(a−y)/b}
b1(c)

+(
Nγ

(N+1)θ
)
(Nδθ − α + z)

Part B: Discrete Distributions and Continuous Distributions on Finite Intervals
Uniform: y ∼ U(a, b) u ∼ U(α, θ)

y ∈ [a, b], a, b ∈ R s ∼ U(ξ, γ ) N = 1 p(z) = γ+ξ

2

f (y) = 1/(b − a) +(
γ−ξ

2(θ−α)

)(
z − θ+α

2

)
Triangular: y ∼ T (a, b) u ∼ T (α, θ)

y ∈ [−a + b, a + b]; a, b ∈ R s ∼ T (ξ, γ ) N = 1 p(z) = γ + (
ξ

2α

)
(z − θ)

f (y) = a−|y|
a2

Binomial: y ∼ B(a, b) u ∼ B(α, θ)
y ∈ {0, 1, . . . , a}, a ∈ I+, b ∈ [0, 1] τ ∼ B(Nα, θ) any p(z) = (

N

N+1
)
(N + 1− kαθ)

f (y) = (
a

y

)
ba(1− b)a−y s ≡ kτ ; k ∈ I+ +(

Nk

N+1
)
z

Negative binomial: y ∼ NB(a, b) u ∼ NB(α, θ)
y ∈ I+, a ∈ I+, b ∈ (0, 1] τ ∼ NB(Nα, θ) any p(z) = (

Nk

N+1
)(
z + Nα(1−θ)

θ

)
f (y) = (

y+a−1
y

)
(1− b)yba s ≡ kτ ; k ∈ I+
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Table 3.1
Continued. . .

Distributions Linear equilibrium
Distribution of u and s N price function

Pascal: y ∼ P(a, b) u ∼ P(α, θ)

y, a ∈ I+, b ∈ [0, 1] τ ∼ P(α, θ) N = 1 p(z) = kα

θ
+ 1

2
(z − α

θ
)

f (y) = (
a−1
a−y

)
by(1− b)a−y s ≡ kτ ; k ∈ I+

Poisson: y ∼ P(a) u ∼ P(α)

y ∈ I+, a > 0 τ ∼ P(α) N = 1 p(z) = k

2
(α + z)

f (y) = aye−a/y! s ≡ kτ ; k ∈ I+

Geometric: y ∼ G(a) u ∼ G(α)

y ∈ I+, a ∈ [0, 1] τ ∼ G(α) N = 1 p(z) = k

2

(
z + 1

α

)
f (y) = a(1− a)y s ≡ kτ ; k ∈ I+

Not only does the approach outlined above simplify the task of computing a linear
equilibrium but it also shows that many combinations of distributions support a linear
equilibrium only if the number of strategic traders is one. In one section of Bagnoli
and Holden (1994), uniform distributions are combined with risk neutral agents and a
linear equilibrium is derived. They indicate that one parametric restriction is that there be
exactly one strategic trader. Such a result follows much more easily from our approach.
A third application is to analyses for which it is not particularly appropriate to assume

that exogenous traders’ orders are normally distributed. Gorton and Pennacchi (1993)
assume that exogenous traders’ orders are binomially distributed and that the terminal
value of the asset is normally distributed. Rather than solve for a linear equilibrium, they
restrict market makers to choose a price that is the best linear unbiased estimate of the
terminal value of the asset. Our results indicate that this combination of distributions
precludes linear equilibria. However, if it were sensible to assume that the terminal value
of the asset was binomially distributed, then a linear equilibrium can be computed and
is described in Table 3.1, Part B.

3.2. A Variable Number of Symmetrically Informed Strategic Traders

The previous analysis took the number of strategic traders as given (and equal to the
number of traders with private information), making it useful if one wishes to under-
stand the effects of competition among strategic traders or the effect of regulations that
alter the number of such traders. It is not appropriate if one wishes to consider traders’
decisions to acquire or trade on private information. Such analyses provide insight into
how much and how quickly information is impounded in prices and issues surrounding
the regulation of insider trading (the desire to obtain information and the willingness to
trade on one’s private information).30 For these situations, one must be able to compute
a linear equilibrium for all N .
For the information acquisition problem, traders make some decisions prior to acquir-

ing private information. If one studies who trades on their private information, all deci-
sions may be made after obtaining the information. Whether all decisions are made

30 See Kyle (1986a), Admati and Pfleiderer (1988), Khanna et al. (1994), Fishman and Hagerty (1992),
Holden and Subrahmanyam (1992), Leland (1992), Foster and Viswanathan (1993), Brown and Zhang (1992)
for examples of such applications.
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prior to obtaining private information is important because it determines whether second
moments must exist. If no decisions are made prior to learning the private information,
second moments need not exist. If not, then second moments must exist. To see this,
notice that, using (3.2), expected profits of acquiring information when N −1 others also
acquire it are

E
[
E[(v − µN − λ(X + u))x | s]] = 1

(N + 1)λN

E[(s − µN − λNE[u])
2].

Clearly, this is well defined only when s has a finite second moment.
If traders make some decisions prior to learning the private information, necessary and

sufficient conditions for a linear equilibrium for all N will include a requirement that
second moments exist. So, first we will determine necessary and sufficient conditions for
a linear equilibrium for all numbers of strategic traders and then add the condition that the
distributions have finite second moments. By Theorem 3.2 there is a linear equilibrium
for a fixed N if and only if ŝ has the same distribution as (N + 1)λN times the N -fold
average of û. It will be convenient to rewrite this. Let wi =d û for i = 1, 2, . . . , N and
let ωN ≡ ∑N

i=1wi . In other words, ωN is the sum of N i.i.d. random variables each of
which has the same distribution as û. Given this, the necessary and sufficient conditions
presented in Theorem 3.2 can be rewritten as(

N

(N + 1)λN

)
ŝ =d ωN,(3.4)

where =d denotes that two random variables are identical in distribution.
In this form, our task is to find distributions for s and u such that, for all N , the

former is a normalized sum of i.i.d random variables all with the same distribution as u.
One version of the Central Limit Theorem tells us that the class of limiting distributions
of normed sums of i.i.d. random variables is the class of stable distributions.31 Since
the distribution of ŝ is exogenous, it must be independent of N . Hence ŝ and û must
be stable random variables. There are many equivalent ways to describe this class. The
following is a standard definition.

Definition. The distribution function F is stable if, for every a1, a2 > 0 and b1, b2,
there are constants a > 0 and b such that F(a1y + b1) ∗ F(a2y + b2) = F(ay + b).
Further, a random variable is stable if its distribution function is.32

To connect this to our analysis, notice that if y, y1, and y2 are each random variables
with the same distribution function, then y is stable if ay + b =d y1 + y2 for some
constants a > 0 and b. This is readily generalized to the following: If y, y1, y2, . . . , yn
are each random variables with the same distribution, then y is stable if, for each n, there
are constants an, bn such that any + bn =d

∑n
i=1 yi .

33 This immediately implies that (3.4)
is met for all N if and only if ŝ and û are stable. Finally, since linear transformations of
stable random variables are stable, s and u must be stable random variables too.

Theorem 3.4. If privately informed traders make all decisions after learning the
information, then there is a linear equilibrium for all N if and only if s and u are stable
random variables with finite expectations. Further, for each N , there is only one linear
equilibrium.

31 For details, see Gnedenko and Kolmogorov (1968) or Loève (1960).
32 For two distributions F and G, F ∗ G is the convolution.
33 Note that bn = 0 if the means of the random variables are zero and y is strictly stable.
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Since stable distributions or laws play a prominent role in the analysis, some additional
information will be useful. Unfortunately, except in rare circumstances (see below), stable
laws do not have explicit expressions for either their densities or distributions. As a result,
characteristic functions are used to describe them and to derive most of their properties.
There are at least three standard representation theorems for stable laws. We provide one
based on Zolotarev (1986).

Representation Theorem. The characteristic function φ of any nondegenerate sta-
ble distribution can be written as

logφ(t) ≡ δ(itγ − |t |α + itωA(t, α, η)),

where

ωA(t, α, η) =
{

|t |α−1η tan(πα/2) if α �= 1

−η(2/π) ln |t | if α = 1

for 0 < α ≤ 2,−1 ≤ η ≤ 1, δ > 0 and γ a finite, real number.

Clearly, every stable law can be completely described by four parameters: α, η, γ ,
and δ. For convenience, if y is stable, we will write it as Y (α, η, γ, δ). There are a number
of properties of stable distributions that are useful. First, if Y (α, η, γ, δ) is stable, then
there exist real parameters a, b so that Y (α, η, γ, δ) =d aY (α, η, γ ′, δ′) + δ′b. Hence, γ
and δ are location parameters and it is common to use standard stable distributions,
γ = 0, δ = 1.34 Second, there is a version of symmetry as follows: If Y (α, η, γ, δ) is
stable then −Y (α, η, γ, δ) =d Y (α,−η,−γ, δ). Third, any stable random variable can
be written as a linear combination of independent stable random variables and any linear
combination of stable random variables is stable. The last useful property is that stable
laws are unimodal and that α (sometimes referred to as the stable exponent) describes
how “peaked” the stable distribution is.
We mentioned above that there are a few stable laws that can be readily described

by their densities. These include the normal distribution (α = 2, any η), the Cauchy
distribution (α = 1, η = 0) for which no moments exist and whose density is

g(y; 1, 0) = 1

2

(
π 2

4
+ y2

)−1
,

and the Lèvy (α = 1/2, η = 1) whose density is

g

(
y; 1
2
, 1

)
=

{
y−3/2e−1/4y
2
√
π

y > 0

0 y ≤ 0.

From the symmetry property, the symmetric reflection of the Lèvy distribution, g(y,
1
2 ,−1), is also stable. Also, from the third property, linear combinations of these yield
stable distributions too.
Finally, we can use the third property to extend our characterization theorem when the

exogenous orders are i.i.d. If they are and they are stable, then their sum is stable and
we will have a linear equilibrium for all N if and only if s has that same distribution.

34 In particular, if the mean of a stable random variable is zero, γ = 0.
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As we explained above, if strategic traders make decisions before learning their private
information, an additional condition is needed: finite second moments. For the stable
distributions, if α = 2, the stable law is the normal distribution. If 1 < α < 2, stable
laws have finite means but infinite variances, and for α ≤ 1, stable laws have neither
finite means nor variances.35 Hence, there is only one member of the stable laws that has
finite second moments: normal distributions.36 This is important if we wish to evaluate
the endogenous entry of strategic traders in the trading game (e.g., if strategic traders
have to pay a cost to acquire information).

Theorem 3.5. If privately informed traders make some decisions prior to learning
the information, then there is a linear equilibrium for all N if and only if s and u are
normal random variables and, for each N , there is only one linear equilibrium.

Proof. The unconditional expected profit is defined only if the second moments of
the distributions ŝ and û are well defined. Thus the only stable distribution that is allowed
is the normal distribution (α = 2). Theorem 3.3 then ensures uniqueness of linear equi-
librium for each N . ✷

Our conditions for a linear equilibrium for all N can be reexpressed as,

logφŝ

(
Nt

(N + 1)λN

)
= N logφû(t) ∀t.

Two complex numbers are equal if their real and imaginary parts are equal. If ŝ and û

are stable, then using the Representation Theorem and setting the real parts equal, we
obtain

δ

(
N

(N + 1)λN

)α

|t |α = Nδ′|t |α′ ∀t,

where primes denote parameters of the characteristic function of û. Since this must hold
for all t , α = α′; that is, ŝ and û have the same stable exponent. Further, λN is

λN =
(

δ

Nδ′

)1/α(
N

N + 1
)
.

By setting the imaginary parts equal and using the fact that the real parts are equal,
one shows that η = η′. To complete the analysis we observe that the derivative with
respect to t of a random variable’s characteristic function evaluated at t = 0 is the
first moment and we have assumed that the first moments exist. Since both ŝ and û are
nondegenerate mean zero random variables, γ = 0 and γ ′ = 0. Thus the other condition
that comes from equating the imaginary parts holds automatically and we see that we
have no restrictions on the relationship between δ and δ′. This discussion thus yields
Theorem 3.6.

35 See Gnedenko and Kolmogorov (1968, chap. 7).
36 Noldeke and Troger (1998) obtain a stronger version of this theorem. In particular, they show that requiring

a linear equilibrium for N1 and N2 (as opposed to all N ) leads to normality when the second moments are
finite.
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Theorem 3.6. There is a linear equilibrium for all N iff ŝ and û are both stable
random variables with the same α’s, η’s, and γ ’s but whose δ’s may differ. For any such
pair of stable random variables, the slope of the only equilibrium linear price function is

λN =
(

δ

Nδ′

)1/α(
N

N + 1
)
.

Since the normal distribution has δ equal to the variance and α = 2, Theorem 3.6 yields
the same answer as the calculation of λN in Theorem 3.3 when second moments exist
(as they do for the normal distribution).

3.3. Implications of Linear Equilibria in Kyle Type Models with
Symmetric Information

As mentioned above, when strategic traders are symmetrically informed and distribu-
tions satisfy the necessary and sufficient conditions for a linear equilibrium, then there
is only one. Further, we have characterized the intercept and slope for a large number of
examples—those described in Table 3.1 as well as the class of stable distributions. There
are a couple of features that are common to all of these examples.

Proposition 3.1. If there is a linear equilibrium and both s and u have finite sec-
ond moments or if they are stable random variables with finite first moments, then λN

declines in N .

Proof. Simply examine the expressions for the slope in Theorems 3.3 and 3.6 ✷

Our final point relies on Theorems 3.5 and 3.6. They show that there is a linear
equilibrium in Kyle type models when some traders either choose to become informed
or choose whether to trade on their information if and only if the distributions are stable.
An important property of stable random variables is that their support is the whole real
line. No random variable on a bounded subset of the real line can be stable. Consequently,
we know that the distributional conditions derived in Theorems 3.5 and 3.6 imply that
there is always a positive probability that the price of the asset is negative in a linear
equilibrium.

3.4. Differentially Informed Strategic Traders

In this subsection, we consider a situation which is more commonly studied in the
rational expectations literature—strategic traders each see their own private signal about
the terminal value of the asset. As is standard, we assume that the ith strategic trader’s
signal is si = v + εi where the εi’s are mean zero, i.i.d. random variables. The market
makers’ problem is unaffected by this change and so we seek conditions such that E[v | z]
is a linear function of z. The most important difference between this and the previous
formulation is that strategic traders are not symmetrically informed. As a result, they
now play a game of incomplete information.
The ith strategic trader chooses an order, xi , to maximize her expected wealth given

her signal, si . Since z = xi + X∼i + u and the price function is linear (µN + λNz for
λN > 0), she solves

max
xi

E[xi(v − µN − λN(xi + X∼i + u)) | si].
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The first-order condition is

xi =
(
1

2λN

)(
E[v | si]− µN − λNE[X∼i | si]

)
(3.5)

and the second-order condition is satisfied if λN > 0. To complete the analysis, assume
that E[v̂ | ŝi] = ξ ŝi for i = 1, 2, . . . , N .37 Finally, in contrast to prior sections, we focus
on equilibria in which strategic traders choose strategies that are linear in their signal,
xj (ŝj ) = aj + bj ŝj .

38

Proposition 3.2. Given that market makers choose a linear price function, a Bayes–
Nash equilibrium has strategic traders choosing

x(ŝi) =
(

ξ

λN(2+ ξ(N − 1))
)
ŝi ≡ βN ŝi .

To find sufficient conditions for a linear equilibrium, we begin with a lemma that
provides necessary and sufficient conditions on the distributions of v and εi so that
E[v̂ | ŝi] = ξ ŝi . Let φε be the common characteristic function for the εi’s.

Lemma 3.1. E[v̂ | ŝi] = ξ ŝi if and only if φv̂(t) = φε(t)
ξ/(1−ξ).

As an aside, many models use the “true value plus noise” type signal: si = v+ εi with
mean zero, i.i.d. εi’s. Authors

39 often assume that E[v | si] is linear in si and rely on
Ericson (1969) to write E[v | si] = (1−τ)E[v]+τsi for τ = Var[v]/(Var[v]+Var[εi]).40
Since E[v̂ | ŝi] = ξ ŝi implies that E[v | si] = (1 − ξ)E[v] + ξsi , Lemma 3.1 provides
a characterization of the class of distributions for which that conditional expectation
is linear and a (slight) generalization of Ericson’s characterization of the conditional
expectation. If second moments are finite, ξ = τ and if not, ξ can still be determined
from the characteristic functions in the same way that we characterized the slope of our
price function in Section 3.3.41

Returning to our problem, we can use Lemma 3.1 and apply Ferguson’s Lemma to
obtain conditions on the distributions of v and u that support a linear equilibrium, where
by this we now mean a sequentially rational Bayes–Nash equilibrium in which market
makers choose a linear pricing rule and strategic traders’ orders are linear functions of
their signals.

Theorem 3.7. There is a linear equilibrium if (�s, u) have finite expectations and

φv̂(NβNt)
2−ξ
Nξ = φv̂(βN t)

N(1−ξ)/ξφû(t) ∀t.(3.6)

37 Since si = v+εi , E[si ] = E[v]. Substituting, E[v̂ | ŝi ] = ξ ŝi is equivalent to E[v | si ] = (1−ξ)E[v]+ξsi ≡
θ + ξsi .

38 Recall that when strategic traders were symmetrically informed, we showed that they would employ the
same trading strategy in equilibrium and that it would be linear in their common signal. To show this, we
only required that the equilibrium price be a linear function of the aggregate order flow. Unfortunately, when
strategic traders are differentially informed, we must restrict attention to equilibria in which it is optimal for
strategic traders to use linear trading strategies. It remains an open question whether there are linear equilibria
when strategic traders employ nonlinear trading strategies. Consequently, in this subsection, we will only be
able to derive sufficient conditions for a linear price function.

39 See, for example, Vives (1989) or Hwang (1993) and the references therein.
40 Obviously, Ericson’s proof assumes that the distributions have finite second moments.
41 One could also use the condition on the characteristic functions in the lemma to construct a table analogous

to Tables 3.1 and 4.1 (the latter appears in Section 4) and describe some of the members of the class of
distributions.
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For fixed N , (3.6) characterizes the class of distributions that support a linear equilib-
rium in Kyle type models with differentially informed strategic traders. Unfortunately,
there is no nice interpretation unless the powers in (3.6) are integers.42 If so, (3.6) requires
that û plus the sum of N(1 − ξ)/ξ random variables with the same distribution as βv̂
have the same distribution as the sum of 2− ξ/Nξ random variables with the same
distribution as Nβv̂.
Extending our analysis to characterize distributions that support a linear equilibrium

for all N is difficult. If the powers in (3.6) are not integers, there is no nice interpretation
at all. If they are integers, v̂ can be interpreted as the sum of random variables but not
as the sum of N i.i.d. random variables. Instead, it is the sum of independent but not
identically distributed random variables. Thus, for there to be a linear equilibrium for all
N when the powers in (3.6) are integers, then v must be an element of the class of lim-
iting distributions of normed sums of independent but not identically distributed random
variables—the infinitely divisible laws (a class which contains the stable laws).43 Little
more can be said because there is no simple representation theorem for the characteristic
function of an infinitely divisible random variable.

3.4.1. Examples and Implications. We cannot construct tables of examples as we did
for the symmetric information version. However, we can compute examples when v and
u are stable by using the Representation Theorem. Substituting into (3.6) and setting the
real parts equal (suppressing the subscript on βN ),

δ

(
2− ξ

N

)(| Nβt |α) = N(1− ξ)δ | βt |α +ξδ′ | t |α′ ∀t,

where primes denote the parameters of the characteristic function of û. Thus, α = α′ and

βα =
(

Nξδ′

δ
(
(2− ξ)Nα − N 2(1− ξ)

)).
Using the definition of β,

λN =
(

ξ

2+ ξ(N − 1)
)(

δ
(
(2− ξ)Nα − N 2(1− ξ)

)
Nξδ′

)1/α
.(3.7)

As both v̂ and û are strictly stable (γ = γ ′ = 0), setting the imaginary parts equal yields

η′

η
= βδ(2− ξ − N(1− ξ))

ξδ′ .

Thus, (3.7) characterizes the slope of the equilibrium linear price function when v and
u are stable.44 As before, the intercept is simply E[v]−λNE[u]. For a linear equilibrium,

42 We can provide sufficient conditions for this. Let c1, c2, and c3 be integers and note that if N(1−ξ) = c1ξ

and (2− ξ) = c2Nξ , both powers are integers. Substituting the latter into the former, N 2c2ξ −N = c1ξ . If we
assume that c1 = c3N then ξ = 1/(c2N − c3). Thus, we can choose c2 and c3 as functions of N to ensure that
ξ is a positive fraction and make the powers in (3.6) integers.

43 As we mentioned previously, the class of stable distributions is defined as the set of distributions for
random variables that are the limit of normed sums of independent and identically distributed random variables
as the number of random variables gets large. The class of infinitely divisible distributions is larger (and contains
the class of stable distributions) because it is defined as the set of distributions for random variables that are
the limit of normed sums of independent random variables (which need not be identically distributed). See
Gnedenko and Kolmogorov (1968) or Zolotarev (1986) for additional details.

44 Notice that Admati and Pfleiderer’s (1988) results for the normal case are obtained by setting α = 2
in (3.7).
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the slope must be positive. Examining (3.7), one notes that if α < 2, then for large
values of N , λN is negative. In other words, if the random variables are stable, there is
an upper bound on the number of strategic traders that admit a linear equilibrium. The
only exception is the normal where λN is well defined for all N .
As we mentioned above, if the powers in (3.6) are integers, the class of limiting

distributions is not the stable laws but the infinitely divisible laws. As a result, we cannot
use the above facts for the stable distributions to determine sufficient conditions for a
linear equilibrium for all N . However, in the Appendix, we prove the following theorem.

Theorem 3.8. If differentially informed strategic traders use linear trading strategies
and v, u have finite second moments, then there is a linear equilibrium for all N iff v
and u are normal.

We close this subsection with some comparative statics results when v and u are
stable because they yield some surprises. Define N∗(α, ξ) so that if there are more than
N∗(α, ξ) strategic traders, then λN < 0 and so there is no linear equilibrium.45 The
first surprise is that the aggressiveness of the strategic traders (β) is not monotone in
the number of strategic traders unless v and u are normally distributed. To see this,
differentiate the expression for β above to obtain

∂βα

∂N
= −A

(
(2− ξ)(α − 1)Nα − N 2(1− ξ)

((2− ξ)Nα − N 2(1− ξ))2

)
∀N < N∗(α, ξ),

for some positive constant A. If α = 2 the derivative is always negative. Thus, the
well-known result46 for normally distributed random variables that each strategic trader
trades less aggressively the more strategic traders there are holds with differentially
informed strategic traders. However, if α ∈ (1, 2) (other stable distributions), the sign
of the numerator is indeterminate—positive for small values of N but negative for rel-
atively large values of N (but N < N∗(α, ξ)). We summarize all of this discussion
in Proposition 3.3.

Proposition 3.3. If there are N < N∗(α, ξ) differentially informed strategic traders
and the random variables are stable, then (i) if α = 2 (the random variables are normal),
each trader trades less aggressively the more of them there are ((∂β/∂N) < 0) and
(ii) if α ∈ (1, 2), then for small N an increase in the number of strategic traders
leads them to trade less aggressively but for larger N an increase leads them to trade
more aggressively. However, the slope of the equilibrium linear price function is strictly
decreasing in the number of strategic traders for all α ∈ (1, 2].

Thus, even though strategic traders’ aggressiveness first decreases and then increases
unlike the usual case, the slope of the price function always declines in the number of
strategic traders.

4. GLOSTEN–MILGROM, EASLEY–O’HARA TYPE MODELS

The important difference between GMEO and Kyle type models is that the former
assumes that exactly one order gets executed and that this order is chosen randomly
from the orders submitted by strategic and exogenous traders. Assume that a strategic

45 N ∗(α, ξ) is the largest integer smaller than that value of N that makes the right-hand side of (3.7) negative.
46 See Holden and Subrahmanyam (1992) or Foster and Viswanathan (1993).
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trader’s order is executed with probability ρ and, conditional on a strategic trader’s order
being selected, each of their orders is equally likely to be selected. We will initially
consider the case when strategic traders are differentially informed and then specialize
our results to the case when they are symmetrically informed.47 Recall that si = v + εi
with i.i.d. εi’s, and E[v | si] = θ + ξsi (equivalently, E[v̂ | ŝi] = ξ ŝi). We simplify by
only considering the case when the exogenous trades are i.i.d., ui =d uj ≡d u∗. One
final observation will be of use. Since si = v + εi with i.i.d. εi’s, then si =d sj and we
will refer to this common distribution as the distribution of s.48

In the second stage, market makers choose prices after observing the randomly chosen
order that will be executed, z. Although all market makers submit prices, only one
will execute the order (the order cannot be divided). As before, the solution is to set
p = E[v | z]. A linear equilibrium arises if this is a linear function of the order,
pG(z) = µG + λGz with λG > 0.
Given this, each strategic trader solves49

max
xi

E[v − µ − λz | si]xi.

Whether the strategic trader is certain that her order will be executed or not is unimportant
because she is risk neutral. In either case, the only payoff relevant event is when z = xi .
Using this, the first-order condition is

xi(ŝi) = ξ

2λ
ŝi ≡ βŝi,

and the second-order condition is satisfied because λ > 0.

Theorem 4.1. In GMEO type models, there is a linear equilibrium if and only if the
probability that a strategic trader’s order is executed is 1/2, (�s, u∗) have finite expecta-
tions, and (ξ/2λ)ŝ =d û∗. Further, if there is a linear equilibrium, then there is only one.
The intercept is E[v] and the slope is characterized by the condition on the distributions
of s and u∗. Finally, the conditions are the same when we seek a linear equilibrium
for all N .

Another representation of the condition on the distributions is xi =d u∗, which is
very similar to Theorem 3.1. The symmetric information version is obtained when every
strategic trader observes s and E[v | s] = s. The solution is found by setting θ = 0
and ξ = 1. There are a couple of odd features about our theorem. It requires that the
probability that the order executed comes from a strategic trader be 1/2, independent of
the number of exogenous and strategic traders there are. In many situations, it is more
natural to assume that this probability is equal to the fraction of strategic traders. In such
situations, our theorem implies that there will not, in general, be a linear equilibrium.
Looked at another way, if there is to be a linear equilibrium, regardless of the number
of strategic traders, ρ = 1/2 and so the equilibrium price function does not depend on
the number (or fraction) of strategic traders.

47 We followed a different approach for Kyle type models because a strategic trader’s problem is very
different in the two cases. In GMEO type models, only one order is executed and so a strategic trader’s
problem is the same in the two cases.

48 In other words, each signal is drawn from the same distribution, the distribution of s.
49 Again, we suppress the regime identifiers when no confusion will arise.
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4.1. Examples and Comparisons with Kyle Type Models

As we did for Kyle type models with symmetric information, we can use Theorem 4.1
to create Table 4.1 which characterizes linear equilibria for different combinations of
distributional assumptions. This is done by noting that we can express the condition that
(ξ/2λ)ŝ =d û∗ as

φs(βt) = eit (βE[s]−E[u
∗])φu∗(t) ∀t.

Using the appropriate characteristic functions yields the solutions reported in Table 4.1.
At first glance, it may appear that GMEO and Kyle type models return the same solutions.
This is only true when there is one exogenous trader in Kyle type models. The reason
is that u in Table 3.1 is the sum of the L exogenous traders’ orders whereas u∗ is one
exogenous trader’s order. Since the second moment of the sum of their orders is strictly
larger than the second moment of any exogenous trader’s order (equal if the exogenous
traders’ orders are perfectly correlated) and since the slope of the equilibrium price
function is the covariance of the terminal value of the asset and the order divided by the
variance of the order, we have:

Proposition 4.1. If there are at least two exogenous trades that do not perfectly
covary, then the slope of the linear equilibrium price function in GMEO type is greater
than in Kyle type models.

Table 4.1
GMEO Type Models

Distributions Linear equilibrium
Distribution of u and s price function

Normal u ∼ N (α, θ), s ∼ N (δ, γ ) p(z) = δ +
(

ξ

2

√
γ

θ

)
(z − α)

Laplace u ∼ LP(α, θ), s ∼ LP(δ, γ ) p(z) = δ +
(

ξγ

2θ

)
(z − α)

Logistic u ∼ LOG(α, θ), s ∼ LOG(δ, γ ) p(z) = δ +
(

ξγ

2θ

)
(z − α)

Extreme value u ∼ EV (α, θ), s ∼ EV (δ, γ ) p(z) = δ + kγ

2
+

(
ξγ

2θ

)
(z − α)

Gamma u ∼ G(α, θ), s ∼ G(Nα, γ ) p(z) = α +
(

ξγ

2θ

)
(z − α)

Chi–square u ∼ χ 2(α), s ∼ χ 2(α) p(z) = α + ξ

2
(z − α)

Inverse Gaussian u, s ∼ IG(α, θ) p(z) = α + ξ

2
(z − α)

Pearson Type III u ∼ P 3(α, θ, ν), s ∼ P 3(δ, γ, ν) p(z) = δ + γ ν +
(

ξγ

2θ

)
(z − α − θν)

Uniform u ∼ U(α, θ), s ∼ U(δ, γ ) p(z) = γ+δ

2
+

(
ξ(γ−δ)

2(θ−α)

)
(z − θ−α

2
)

Triangular u ∼ T (α, θ), s ∼ T (α, γ ) p(z) = γ + (
ξ

2

)
(z − θ)

Binomial u, τ ∼ B(α, θ), s = kτ p(z) = kαθ +
(

kξ

2

)
(z − αθ)

Negative Binomial u, τ ∼ NB(α, θ), s = kτ p(z) =
(

kα(1−θ)

θ

)
+ (

kξ

2

)(
z − α(1−θ)

θ

)
Pascal u, τ ∼ P(α, θ), s = kτ p(z) = kα

θ
+

(
kξ

2

)(
z − α

θ

)
Poisson u, τ ∼ P(α), s = kτ p(z) = α +

(
kξ

2

)(
z − α

)
Geometric u, τ ∼ G(α), s = kτ p(z) = 1

α
+

(
kξ

2

)(
z + 1

α

)



on the existence of linear equilibria 21

5. INDIVIDUAL ORDER TYPE MODELS

Individual order type models are similar to Kyle type models in that every strategic and
exogenous trader’s order is executed. The key difference between them is that in IO
type models, market makers see the whole vector of orders, not just the order imbal-
ance (aggregate net order flow). We assume that the position of the order in the order
vector conveys no information to market makers50 and model this by assuming that
the order vector market makers see, Z, is a permutation of the vector (x1, x2, . . . , xn,
u1, u2, . . . , uL) where n can be larger than or equal to N , the number of strategic traders.
Whether n is strictly greater than N depends on whether strategic traders are permitted
to submit multiple orders, an issue that will affect the subsequent analysis.
In an IO model, a linear equilibrium has p(Z) = µ+∑n+L

i=1 λizi , where Z = (z1, z2, . . . ,

zn+L). Since position is uninformative, for any permutation of Z all orders must be exe-
cuted at the same price. This implies that λi = λj for all i, j . Thus, in any linear
equilibrium, p(Z) = µ + λ

∑n+L
i=1 zi ≡ µ + λz. Since market makers are risk neutral,

E[v | Z] = p(Z) in equilibrium. Noting that in Kyle type models, E[v | z] is a linear
function of z, the order imbalance, we have the following theorem.

Theorem 5.1. Any distributions that support a linear equilibrium in an individual
order model support a linear equilibrium in Kyle type models and have E[v | Z] =
E[v | z].
This last condition explains why not every linear equilibrium in a Kyle type model is

a linear equilibrium in an IO model. Theorem 5.1 tells us that distributions that support
a linear equilibrium in an IO model are a subset of the distributions that support a linear
equilibrium in a Kyle type model, the subset being defined by the added condition that
E[v | Z] = E[v | z]. Thus, we must study the effect of this last condition on the results
obtained in Section 3.

5.1. An Exogenous Number of Symmetrically Informed Strategic Traders

In this subsection, we maintain the assumptions used in Section 3.1 and proceed by
assuming that strategic traders are only allowed to submit one order. (We relax this
restriction below.) As a result, a strategic trader’s problem is the same as in Section 3.1
and so (3.1) characterizes her best reply and (3.2) characterizes the unique Nash equi-
librium given p(Z) = µN + λNz.

Theorem 5.2. If strategic traders submit one order each, then there is a linear equi-
librium in an IO model iff there is one strategic and one exogenous trader, their orders
have the same distribution, and (s, u1) have finite expectations. These latter conditions
are equivalent to ŝ =d 2λû1.

The intuition relies on the fact that market makers observe each order. Since they
know that there are N strategic traders and each submits exactly one order, market
makers realize that N of the N + L elements of the order vector were submitted by
strategic traders. Since symmetrically informed strategic traders submit the same order,
the conditional probability that any N elements of Z are this common order is zero if
the N selected elements are not all the same. As a result, E[v | Z] is a weighted average
of E[v] and E[v | ζ ] = µN + 2λNζ for ζ equal to the common value of the N selected

50 We do this because this model is intended to capture salient features of call markets with market makers
and it appears that market makers do not know who submits which orders in such markets.
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elements and the weights are the conditional probabilities that the N selected elements
were submitted by strategic traders given Z. But, by Theorem 5.1, E[v | Z] = E[v | z]
or (N + 1)λN times the expected order submitted by strategic traders conditional on Z

must equal z, the order imbalance. This is a very stringent condition and can be met
only if N = L = 1. The conditions on the distributions of x1 and û1 (or equivalently ŝ

and û1) follow from Theorems 3.1 and 3.2.
The proof of Theorem 5.2 relies heavily on the assumption that each strategic trader

is allowed to submit exactly one order. There are circumstances where such a condition
is sensible, as, for example, if market makers can commit to not executing an order
vector that contains more than one order for each trader. Generally, though, we expect
that strategic traders cannot be restricted to submitting only one order each and so we
turn to conditions under which there is a linear equilibrium in the IO model when they
can split their order.
In what follows, we restrict attention to environments with exactly one strategic

trader.51 Given this, conditional on a price function, the manner in which the order
is split is payoff irrelevant to the strategic trader. Consequently, (3.1) continues to define
her best reply and, given that there is only one strategic trader, her equilibrium choice
too. Also, with one strategic trader, there is no distinction between symmetrically and dif-
ferentially informed strategic traders. Even though how the strategic trader’s total order,
x1, is split is payoff irrelevant, it will affect market makers’ inferences. Let a split be a
vector R = (r1, r2, . . . , rk) with r = ∑k

i=1 ri such that x1 = r . As before, there are L ≥ 1
exogenous traders submitting orders (u1, u2, . . . , uL) and u = ∑L

i=1 ui .
By Theorem 5.1, we know that conditions for a linear equilibrium in an IO model

are those from Theorems 3.1 and 3.2 (equivalently Theorem 3.7 when N = 1) plus
the requirement that E[v | Z] = E[v | z]. The former conditions require that x1 be
equal in distribution to û. This is equivalent (by Theorem 3.2) to requiring that the
signal less its expected value, ŝ, be equal in distribution to 2λû. The final condition,
E[v | Z] = E[v | z], is trivially satisfied. Since we already require that x1 =d û, the
strategic trader can simply choose a split so that ri =d ûi for i = 1, 2, . . . , L. If the
strategic trader employs such a split, then the following theorem holds.

Theorem 5.3. If there are L ≥ 1 exogenous traders and one strategic trader who
may split her order as she chooses, then there is a linear equilibrium in an IO model
under the same distributional assumptions that support a linear equilibrium in Kyle type
models: x =d û or ŝ =d 2λû.

Consequently, all of our results in Section 3 on the linear equilibrium in Kyle type
models carry over to the linear equilibrium in an IO model and will not be repeated. We
do note that this implies that the restriction to a linear equilibrium in an IO model is a
very severe restriction. Observing the vector of submitted orders will generally result in
a different equilibrium price function than observing only the order imbalance.

6. CONCLUSION

In a game-theoretic market microstructure model that has three standard market micro-
structure models as special cases, we sought necessary and sufficient conditions for linear

51 Allowing strategic traders to split orders creates an immediate problem because a strategy now is not only
how many shares each wishes to trade, but how to split the order. This latter dimension becomes so important
that we leave considerations of conditions for a linear equilibrium in an IO model with two or more strategic
traders for future work.
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equilibria. In Kyle type models, market makers see the order imbalance, select prices,
then execute orders at the price most favorable to the traders. With identically informed
strategic traders, the necessary and sufficient condition for a linear equilibrium is that
this common order must have the same distribution as an N -fold average of the exoge-
nous traders’ aggregate net order, û. We provided a series of examples of combinations of
distributions that produce a linear equilibrium and computed the equilibrium price func-
tion. We also showed that most of the results from the standard version (with normal
distributions) are due to the focus on linear equilibria, not the normality assumptions.
Necessary and sufficient conditions for a linear equilibrium when the number of active

strategic traders is endogenous are more stringent. If no decisions are made prior to
obtaining private information, there is a linear equilibrium if and only if all random
variables are stable (a class that includes the normal distribution). If some decisions are
made prior to obtaining private information, there is a linear equilibrium if and only if
the random variables are normally distributed.
We extended the analysis to differentially informed strategic traders using a standard

“true value plus noise” signal. We provided a characterization theorem for the class of
distributions that support a linear equilibrium and used it to derive linear equilibria when
all random variables were stable. For this class, the slope of the price function was
decreasing in the number of strategic traders. We showed that the results on existence of
equilibrium and strategic traders’ aggressiveness were sensitive to which stable distribu-
tion was chosen. If the random variables were normally distributed, there was a linear
equilibrium for any number of strategic traders and their aggressiveness was increasing
in their numbers. For all other stable random variables, there was a maximum number
of strategic traders for which there was a linear equilibrium.
In GMEO type models, exactly one order is submitted, which market makers observe

and price. It is executed at the price most favorable to the trader. We showed that nec-
essary and sufficient conditions for a linear equilibrium are the same whether strategic
traders are symmetrically or differentially informed, because when only one order is exe-
cuted, whether a strategic trader knows what the other strategic traders know is unimpor-
tant. Necessary and sufficient conditions for a linear equilibrium are that each strategic
trader’s order must have the same distribution as each exogenous trader’s order and the
probability that the order executed comes from a strategic trader must be 1

2 . This latter
condition is quite strong because it requires that the market mechanics ensure that the
probability is 12 regardless of the number or fraction of strategic traders. Finally, we noted
that if there are exactly one strategic and one exogenous trader, then the linear equilibria
in the GMEO and Kyle type models must be identical and supported by exactly the same
distributions. If there is more than one trader of either type, the slope of the linear price
function in GMEO type models is greater than for Kyle type models—the market is less
deep in GMEO type models.
Individual order type models are designed to capture salient features of call markets

with market makers. Thus, market makers observe the vector of orders (not just the order
imbalance), cannot infer anything about who submitted the order from its position in the
order vector, and choose prices. All orders are executed at the price most favorable to
traders. We showed that the restriction to linear equilibrium in markets of this type is
quite important; it implies that if there is a linear equilibrium in an IO type model then
there is one in Kyle type models too (but not the converse).
We showed that if strategic traders cannot split their total order, then there is a linear

equilibrium if and only if there is exactly one strategic and one exogenous trader and
the distributions of their orders are the same. If strategic traders are allowed to split their
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total order, the analysis of how they do this in equilibrium is extremely complicated.
However, when we restricted attention to one strategic trader who could split her order,
we found that the conditions for a linear equilibrium are the same as in Kyle type models.
As a result, all of our results about equilibria in Kyle type models carried over to this
setting when there was one strategic trader.
We have thus presented a detailed analysis of the conditions that are required to support

a linear equilibrium in models of market making. Our analysis focused not just on the
Kyle model extensively analyzed in the literature but also the GMEO model and the
individual order model. Most real world financial markets are closer to the GMEO and
individual order models and thus our work represents a first step toward analyzing more
realistic market structures.

APPENDIX

Proof of Theorem 3.1. Since the players’ objective functions are not well defined
unless the random variables have finite expectations, equilibrium exists only if they do.
Given this, by Ferguson’s Lemma, E[ŝ | ẑ] = λN ẑ iff

∂

∂t0
φŝ, ẑ(t0, t1)

∣∣∣
t0=0

= λN

∂

∂t1
φẑ(t1).

Substituting using the definition of a characteristic function (φy(t) ≡ E[ei(t ·y)]) and
differentiating,

E[iŝeit1 ẑ] = λNE[iẑe
it1 ẑ].

Note that ẑ = û+Nx̂ and that x̂ and û are independent because ŝ and û are. Substituting
and rearranging, we have

E[iŝeit1Nx̂]E[eit1û] = λN

(
E[iNx̂eit1Nx̂]E[eit1û]+ E[eit1Nx̂]E[iûeit1û]

)
.

Using (3.2) to eliminate ŝ and rearranging,

E[eit1û]E[ix̂eit1Nx̂] = E[eit1Nx̂]E[iûeit1û].

The final steps are simpler if we revert to characteristic function notation. Using primes
to denote derivatives with respect to t1,

φû(t1)φ
′
Nx̂(t1) = NφNx̂(t1)φ

′
û(t1)

or
φû(t1)φ

′
Nx̂(t1) − NφNx̂(t1)φ

′
û(t1) = 0.

If φû(r1) �= 0, then by continuity of the characteristic function there is an open neigh-
borhood of r1 where the function is nonzero. Hence, one can divide by φû(t1) in this
neighborhood and obtain

∂

∂t1

(
φNx̂(t1)

φû(t1)
N

)
= 0.

Since φû(t1) is not identically zero in this neighborhood of r1, this means that

φNx̂(t1) = C(r1)φû(t1)
N

for some complex constant C(r1).
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Similarly, if φNx̂(r1) �= 0, a similar argument shows that

∂

∂t1

(
φû(t1)

φNx̂(t1)
(1/N)

)
= 0.

As before, this leads to
φNx̂(t1) = C(r1)φû(t1)

N

for some complex constant C(r1).
The final possibility is that φû(r1) = φNx̂(r1) = 0, in which case there is nothing to

prove.
Hence, we have a relationship that we desire between the characteristic functions,

except that we need to show that the constant C(r1) is independent of r1. If that were the
case, since all characteristic functions evaluated at 0 equal 1, we have C(r1) = C = 1.
To show that the constant C(r1) is independent of r1, we need to impose our technical

condition. Otherwise the theorem does not hold. For example, let N=1 and let each t1

Int1(t1) = largest integer smaller than t1

and
Int2(t1) = smallest integer larger than t1.

Now define

φû(t1) =
{
1− (t1 − Int1(t1)) if Int(t1) is even

1− (Int2(t1) − t1) if Int(t1) is odd

and define
φx̂(t1) = 2[φû(t1) − 1

2 ]

From Feller, (1977, pp. 479–480), these are characteristic functions for discrete distri-
butions. Further, φx̂(t1) = φû(t1) on (−1, 1), (3, 5), (7, 9), . . . , and φx̂(t1) = −φû(t1)

on (1, 3), (5, 7), (9, 11), . . . Hence the constant changes at every point when the two
characteristic functions are zero. However, at these points the derivative of the charac-
teristic function φû( ) is not continuous. Thus it is clear that some smoothness restriction
is needed.
We next show that with our technical condition the constant C(r1) is independent of r1

and equal to 1. Assume not—that is, there are two points r1 < s1 where C(r1) �= C(s1).
Hence, we need only show that the constant cannot change when either (and hence both)
characteristic function is (are) zero.
Hence consider a point t1 such that φû(t1) = 0. By our technical condition, φû(t1) �= 0

and there is a neighborhood [r1, s1] where φû �= 0 (otherwise φû(t
n
1 ) = 0 for some

sequence tn1 → t1 with tn1 �= t1 and thus φ
′
û
(t1) = 0). Let C(r1) be the constant for the

neighborhood (r1, t1) and C(s1) be the constant for (t1, s1). Then we obtain that

φN
Nx̂(t1) = C(r1)(N !)φ

′
û(t1)

by taking the N th derivative from the left and that

φN
Nx̂(t1) = C(s1)(N !)φ

′
û(t1)

by taking the N th derivative from the right (notice that we have used the continuity of
the derivatives here). Hence the two constants must be equal.
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The proof thus works for the region (−U,U). Outside this region the characteristic
functions are zero and hence there is nothing to prove.
Hence, we obtain that

φNx̂(t1) = φû(t1)
N .

This condition on the characteristic functions of Nx̂ and û implies that Nx̂ has the same
distribution as the sum of N i.i.d. random variables, each with the same distribution as
û; that is, x̂ is an N -fold average of û. ✷

Proof of Theorem 3.3. If the distributions have finite second moments, then ẑE[ŝ |
ẑ] = λN ẑ

2 because E[ŝ | ẑ] = λN ẑ. Taking expectations with respect to ẑ and noting that
Cov[s, z] = E[ŝẑ], and Var[z] = E[ẑ2] yields λN . If at least one of the second moments
is not finite, then we use the fact that for every characteristic function, φ, there exists t1
and t2 such that φ(t1) �= φ(t2). Let wi ≡ φŝ(

N

λN (N+1) ti), and define ψŝ(wi) = ti . Using
(3.3), φû(ti) = wi . Define ψû(wi) = ti and note that by taking ratios,

N

λN(N + 1) = ψŝ(wi)

ψû(wi)
i = 1, 2.

Thus, if (3.3) holds, λN is uniquely defined. To compute the intercept, note that E[ŝ | ẑ] =
λN ẑ is equivalent to E[s−E[s]

∣∣z−E[z]] = λN(z−E[z]) or E[s | z] = E[s]−λNE[z]+λNz.

Hence, the intercept term is µN = E[s]− λNE[z]. ✷

Proof of Proposition 3.2. Assuming that xj (ŝj ) = aj +bj ŝj implies that E[X∼i | si] =∑
j �=i aj + ∑

j �=i bjE[ŝj | ŝi]. Since E[ŝj | ŝi] = E[sj − E[sj ] | ŝi], sj = v + εj , and εj is
independent of everything,

E[ŝj | ŝi] = E[v | ŝi]− E[v] = θ + ξ ŝi − (1− ξ)E[v].

Substituting into (3.6),

xi(ŝi) =
(
1

2λN

)
(θ + ξE[v]− µN − λNE[u]) + ξ

2λN

ŝi − 1

2

∑
j �=i

aj −
(
ξ

2

∑
j �=i

bj

)
ŝi .

Thus,

bi = ξ

2λN

− ξ

2

∑
j �=i

bj ,

ai =
(
1

2λN

)
(θ + ξE[v]− µN − λNE[u]) − 1

2

∑
j �=i

aj .

Summing over the N strategic traders and solving for ai and bi yields

x(ŝi) = θ + ξE[v]− µN − λNE[u]

λN(N + 1) +
(

ξ

λN(2+ ξ(N + 1))
)
ŝi ,

and so ai = aj ≡ a and bi = bj ≡ b. Since we have assumed that E[v | z] = µN + λNz,
E[v] = µN + λNE[z]. Using the definition of z, E[z] = Na + b

∑N
i=1 E[ŝi] + E[u].

Finally, substitute into the above expression to obtain the version of x(ŝi) reported in the
proposition. ✷
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Proof of Lemma 3.1. By Ferguson’s Lemma, E[v̂ | ŝi] = ξ ŝi if and only if

∂φv̂,ŝi
(t0, t)

∂t0

∣∣∣
t0=0

= ξ
∂φŝi

(t)

∂t
∀t.

Following exactly the same reasoning used in the proof of Theorem 3.1 yields the
result. ✷

Proof of Theorem 3.7. Note that v̂ − λz = v̂ − λ
∑N

i=1 x(si) − λû = v̂ − Nλβv̂ −
λβ

∑N
i=1 εi − λû where we are suppressing the N subscript on λ and β. Also, eitz =

eitûeitNβv̂DN
i=1e

itβεi . Given this, the derivative condition from Ferguson’s Lemma is

0 = E

[
i
(
(1− Nλβ)v̂ − λβ

N∑
i=1

εi − λû
)
eitûeitNβv̂DN

i=1e
itβεi

]
.

Simplifying,

0 = E

[
i
(
1− Nλβ)v̂eitNβv̂

]
φû(t)φε(βt)

N

−
N∑
i=1
E[iλβεie

itβεi ]φε(βt)
N−1φû(t)φv̂(Nβt) − E[iλûeitû]φv̂(Nβt)φε(βt)

N .

This is equivalent to

d

dt

[
φv̂(Nβt)

1−Nβλ
Nβ

φε(βt)
Nλφû(t)

λ

]
= 0 ∀t.

For this derivative to be zero for all t , the numerator must equal the denominator times
a constant. Combining this with the fact that φv̂(t) = φε(t)

ξ/(1−ξ), yields the version
reported in the theorem. ✷

Proof of Theorem 3.8. An equivalent representation of (3.6) is

φv̂(t)
(2−ξ)/ξ = φv̂(t/N)(N

2(1−ξ))/ξφû

(
t

NβN

)N

.(A.1)

Our proof relies on showing that βN

√
N converges to a finite number as N goes to

infinity. We begin by supposing that βN converges to a positive number, possibly infinity.
Since û has a finite second moment, the Strong Law of Large Numbers implies that

φû

(
t

NβN

)N

→ 1.

Further, since v̂ has a finite second moment, by the original Central Limit Theorem,

φv̂

(
t

N

)N2

→ e−t2σv .

Thus the random variable represented by the right-hand side of (A.1) converges to a
random variable whose distribution is N (

0, (σv(1− ξ))/ξ). But the left-hand side is the
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characteristic function of a random variable with distribution N (0, (σv(2 − ξ))/ξ). As
these can never be equal, we have that βN converges to 0 as N goes to infinity.
Given this, we now show that βN

√
N converges to a finite number. We begin by

supposing that it converges to zero. Letting t in (A.1) equal βN

√
Nτ , we note that the

last term in (A.1) converges to e−τσu by the original Central Limit Theorem and the first
term on the right-hand side converges to 1 by the Strong Law of Large Numbers (and
our supposition). Since the left-hand side also converges to 1, we have a contradiction
and so βN

√
N cannot converge to 0. Now, suppose that it diverges. Following the same

line of reasoning used in the first paragragh leads to a contradiction.
Finally, suppose that βN

√
N converges to a finite number, say c. Then, because

t/NβN = (1/(βN

√
N))(t/(

√
N)),

φû

(
t

NβN

)N

→ e−t2σu/c
2

and

φv̂

(
t

N

)N2

→ e−t2σv .

Thus, by (A.1),

φv̂(t) = exp
{( −t2

2− ξ

)(
σv(1− ξ) + ξσu

ξ

)}
.

Thus v and u must be normally distributed.

Proof of Theorem 4.1. First, since the si’s have the same distribution, the distribution
of s, the distribution of each strategic trader’s order is the same and if x is the random
variable representing a strategic trader’s order, then

E[v | z] = P(z = x | z)E[v | x = z]+ P(z = u∗ | z)E[v].

Second, because si =d s, there is a common, induced distribution and density for a
strategic trader’s order, say H, h and so

E[v | z = x] = E[v | ŝ = 2λ

ξ
z] = θ + ξE[s]+ 2λz

and

P(z = x | z) = ρh(z)

ρh(z) + (1− ρ)g(z)
,

where g is the common density of uj . Substituting and matching the intercept with µ

and the slope with λ implies that

µ = (θ + ξE[s])P(z = x | z) + (1− P(z = x | z))E[v] ≡ E[v]

λ = 2λP(z = x | z).

Because E[v | ŝ] = θ + ξE[s] + ξ ŝ and so E[v] = θ + ξE[s] + ξE[ŝ] = θ + ξE[s],
µ = E[v]. The latter implies that P(z = x | z) = 1/2 or that ρ = 1/2 and g = h. Thus,
x̂ =d û∗ or (ξ/2λ)ŝ =d û∗. ✷
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Proof of Theorem 5.2. Since the price function is linear in Z (and z), (3.1) charac-
terizes a strategic trader’s best reply and (3.2) the (common) equilibrium strategy. Let Zs

j

be the j th selection of N of the N +L elements of Z and f the conditional probability
that Zs

j is the strategic traders’ order vector, �x, given Z. Thus,

E[v | Z] =
K∑
j=1

f (Zs
j | Z)E[v | �x = Zs

j ],

where K = (
N+L

N

)
. Since strategic traders all observe the same signal they place the same

order. Thus, if Zs
j is not a vector of identical orders, say ζj , the probability that it is the

vector of strategic traders’ orders is zero. Hence,

E[v | Z] = µN +
(
(N + 1)

N

)
λN

N+L∑
j=1

f (Zs
j = �ζj | Z)ζj .

By Theorem 5.1, E[v | Z] = E[v | z] and so(
(N + 1)

N

) N+L∑
j=1

f (Zs
j = �ζj | Z)ζj =

N+L∑
j=1

zj ≡ z.(A.2)

This condition must hold for all Z so consider an open ball about the set of vectors
Z such that zi = zj ∀i, j . For this measurable set of Z vectors, (A.2) implies that
N + 1 = N + L, which implies that L = 1.
Once we know that L = 1, all Z vectors that arise with positive probability have N

identical elements (the strategic traders’ orders) and one additional element, the exoge-
nous trader’s order, now labeled zN+1 for convenience. If N ≥ 2, then Z reveals the
strategic traders’ common order, ζ , with probability one and so E[v | Z] = µN +(
(N + 1)/N)

λNζ, which by Theorem 5.1 must equal µN + λN(Nζ + zN+1). This imme-
diately implies that N = 1. Given this, Z = (z1, z2) where z1 is the strategic trader’s
order with probability 1

2 , which, as in standard Kyle type models, implies that E[v |
Z] = µ + λz. ✷

Proof of Theorem 5.3. If we can show that the splitting rule described ensures that
E[v | Z] = E[v | z] then Theorem 5.1 combines with Theorems 3.1 and 3.2 to complete
the proof. Let Z = (Zs

j , Z
u
j ) where, for each j , Zs

j is the j th selection of L elements
and Zu

j is the j th residual L elements of Z. The strategic trade’s order and exogenous
traders’ orders are independent and, given the splitting rule, the probability that Zs

j is the
strategic trader’s submitted orders given Z (say f (Zs

j | Z)) equals the probability that
Zu

j is the exogenous traders’ orders given Z (say f (Zu
j | Z)). Thus, using (3.1),

E[v | Z] =
K∑
j

f (Zs
j | Z)E[v | Zs

j = R] = µ +
K∑
j

f (Zs
j | Z)(2λzsj ),

where K = (2L
L

)
and zsj is the sum of the L elements of Zs

j . Further, because f (Zs
j |

Z) = f (Zu
j | Z),

E[v | Z] = µ +
K/2∑
j

f (Zs
j | Z)(2λz) = µ + λz.

This last expression is E[v | z] as derived in Section 3. ✷
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