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This paper provides evidence that stock traders focus on round numbers as cognitive reference points for
value. Using a random sample of more than 100 million stock transactions, we find excess buying (selling)

by liquidity demanders at all price points one penny below (above) round numbers. Further, the size of the buy–
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buying (selling) by liquidity demanders when the ask falls (bid rises) to reach the integer than when it crosses
the integer. We discuss and test three explanations for these results. Finally, 24-hour returns also vary by price
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by liquidity demanders below (above) round numbers yield losses approaching $1 billion per year.
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1. Introduction
In an ideal world, liquidity demanders would be
equally likely to buy or sell at any given price point.
In the real world, they often focus on round number
thresholds as cognitive reference points for value. If
security traders do focus on round numbers as ref-
erence points for value, a security price path that
reaches or crosses a round number threshold may
generate waves of buying or selling.

This paper examines three different kinds of round
number effects. First, we consider the left-digit effect,
which claims that a change in the leftmost digit of a
price dramatically affects the perception of the mag-
nitude. To illustrate, a price drop from $7.00 to $6.99
is only a one-cent decline, but a quick approximation
based only on the leftmost digit suggests a one-dollar
drop. In other words, when assessing the drop from
$7.00 to $6.99, people anchor on the leftmost digit
changing from 7 to 6, and believe it is a $1 drop.
They do not round $6.99 up to $7.00, because this
is mentally costly. The second round number effect
we analyze is based on round number thresholds for
action, which we call the threshold trigger effect. The
idea is that investors have a preference for round
numbers, where the hierarchy of roundness from the
most round to the least round is whole dollars, half-
dollars, quarters, dimes, nickels, and pennies. There-
fore, in the example above, when the price reaches the

round number $7.00 or crosses below it to $6.99, this
drop triggers trades.

Both the left-digit effect and the threshold trig-
ger effect depend on the actions of value traders,
who are traders that buy underpriced stocks and
sell overpriced stocks relative to their valuations. The
trader’s valuation is derived from earnings, divi-
dends, book assets, or other measures of fundamen-
tal value. For example, suppose that a value trader
engages in fundamental analysis and determines that
a particular stock is worth $7.52. If the stock price
drops below that level and no new information causes
the investor to change his valuation, then the stock
will be considered underpriced, and this will generate
a buy trade at some point. Theoretically, a buy trade
could be triggered by any price below $7.52. How-
ever, the left-digit effect causes a great discontinuity in
the perceived market price because it crosses a round
number threshold, and so a change from $7.00 to $6.99
triggers more buys than a change from, say, $7.08
to $7.07. Similarly, under the threshold trigger effect,
some value traders may have selected $7.00 as a tar-
get for buying. Thus, if the price falls to $7.00 or goes
below it, there is excess buying by value traders. Con-
versely, with respect to overpriced stocks, both effects
predict that if the price rises to $8.00 or above it, there
is excess selling by value traders. Note that the left-
digit effect, unlike the threshold trigger effect, does
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not predict excess buying when prices fall exactly to
a round number.

The third round number effect we examine is based
on a combination of limit order clustering and undercut-
ting. Limit order clustering occurs when limit order
prices are more frequently on round numbers. For
example, Chiao and Wang (2009) find that limit order
prices are clustered on integers, dimes, nickels, and
multiples of two of the tick size on the Taiwan Stock
Exchange. Bourghelle and Cellier (2009) document the
same phenomenon in Euronext. Undercutting occurs
when a new limit sell (buy) is submitted at a penny
lower (higher) than the existing ask (bid). The cluster
undercutting effect is a combination of both limit order
clustering and undercutting. Because of limit order
clustering, it is relatively common that existing limit
sell orders set the current ask at a round number, say,
$7.00. Then a new limit sell undercuts at $6.99 and
sets a new ask price. Then a market buy hits the new
ask price. Thus, a buy trade is frequently recorded
below a round number. Conversely, because of limit
order clustering, it is relatively common that exist-
ing limit buy orders set the current bid at a round
number, say, $5.00. Then a new limit buy undercuts
at $5.01 and sets the new bid price. Then, a mar-
ket sell hits the new bid price. Thus, a sell trade is
frequently recorded above a round number. Hence,
the cluster undercutting effect predicts excess buying
below round numbers and excess selling above round
numbers. Note that unlike the left-digit and threshold
trigger effects, this cluster undercutting effect does not
predict excess selling (buying) when prices rise (fall)
to an exact round number.

To provide evidence for or against the three effects,
which are all based on the unifying hypothesis that
stock traders focus on round numbers as cognitive
reference points for value, we choose all trades of
100 randomly selected firms each year from 2001 to
2006. This is the decimal pricing era, where the tick
size is $0.01. We obtain a sample of 137 million trades.
Following Huang and Stoll (1997), trades above the
bid-ask midpoint are classified as liquidity deman-
der buys, trades below the midpoint are classified
as liquidity demander sells, and trades equal to the
midpoint are discarded.1

We first perform an unconditional analysis. For
each .XX price point, we aggregate all buys and
all sells for each firm in each year (e.g., trades at
$1.99, $2.99, $3.99, etc. are aggregated at the .99
price point). The buy–sell ratio is then computed for

1 Discarding midpoint trades avoids any contamination that may
arise from misclassifying midpoint trades. Lee and Ready (1991)
claim only a 75% success rate in classifying midpoint trades, which
is equivalent to a 25% error rate. Lee and Radhakrishna (2000)
empirically verify the 75% success rate/25% error rate of the Lee
and Ready algorithm.

each firm-year. This ratio is computed in three dif-
ferent ways: number of buys/number of sells, shares
bought/shares sold, and dollars bought/dollars sold.
The median of these three ratios over all firm-years is
then computed for each price point from .00 to .99. We
find that, irrespective of how we compute the buy–sell
ratio, there is excess buying by liquidity demanders
at all price points one penny below integers, half-
dollars, quarters, dimes, and nickels (i.e., .04, .09, .14,
.19, etc.) and excess selling by liquidity demanders at
all price points one penny above integers, half-dollars,
quarters, dimes, and nickels (i.e., .01, .06, .11, .16, etc.).
Further, the highest and lowest ratio of buys to sells
by liquidity demanders occurs at the .99 and .01 price
points, immediately adjacent to integers. The second-
highest and second-lowest ratio of buy to sells by liq-
uidity demanders occurs at .49 and .51, immediately
adjacent to half-dollars. Overall, we find that the size
of the buy–sell imbalance is monotonically ordered by
the roundness of the adjacent round number. That is,
the greatest imbalance is around integers, the second-
greatest imbalance is around half-dollars 1 0 0 0 1and the
lowest imbalance is around nickels.

The unconditional buy–sell imbalance results above
could be evidence of (1) the cluster undercutting effect
below and above round numbers and/or (2) a buy–
sell imbalance after crossing round number thresholds
due to the left-digit effect or the threshold trigger
effect. To distinguish between these two possibilities,
we now turn to a conditional analysis of buy–sell
ratios when the price rises or falls around an inte-
ger. We conduct four main analyses: ask falls below
integer, ask falls to integer, bid rises to integer, and
bid rises above integer. We also perform two sup-
plementary analyses as robustness checks: ask rises
while staying below integer, and bid falls while stay-
ing above integer. Each of these six tests have the
following respective controls: ask falls below nickel,
ask falls to nickel, bid rises to nickel, bid rises above
nickel, ask rises while staying below nickel, and bid
falls while staying above nickel.

Under all three buy–sell ratios, we find strong
excess buying when the “ask falls to integer” and
strong excess selling when the “bid rises to integer.”
There is also some excess buying when the “ask falls
below integer” and some excess selling when the
“bid rises above integer.” However, the excess trading
when the price reaches the integer is an order of mag-
nitude larger than the excess trading when the price
crosses the integer. This conditional evidence supports
that the left-digit effect or the threshold trigger effect
takes place on integers.

Very little of the excess buying below round num-
bers and excess selling above round numbers is
because of excess trading after crossing thresholds
based on the left-digit effect or the threshold trigger
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effect. Thus, we conclude that the excess buying below
round numbers and excess selling above round num-
bers observed in the unconditional tests must be pre-
dominantly due to the cluster undercutting effect.

To summarize, our unconditional tests and our con-
ditional tests provide evidence of all the three effects
based on the unifying hypothesis that stock traders
focus on round numbers as cognitive reference points
for value. A number of further tests, discussed later,
confirm this conclusion.

Next, we examine unconditional 24-hour returns.
We compute both the trade price returns and the
midpoint returns that result from buying whenever
buy trades are observed at a .XX price point and
the position is closed 24 hours later. Similarly, we
compute both the trade price returns and the mid-
point returns that result from (short) selling when-
ever sell trades are observed at a .XX price point
and the position is closed 24 hours later. We find a
systematic pattern in returns around all round num-
ber thresholds: integers, half-dollars, quarters, dimes,
and nickels. Specifically, we find that that liquidity
demanders who buy (sell) below the threshold have
lower (higher) returns, and liquidity demanders who
sell (buy) above the threshold have lower (higher)
returns.

Given these findings, we next try to determine
whether there is a connection between the return pat-
tern surrounding thresholds mentioned above and the
buy–sell ratios surrounding thresholds discussed ear-
lier. Our regression tests reveal that buy–sell imbal-
ances are a major determinant of the variation by
price point of average 24-hour returns. A higher
buy–sell ratio yields a more negative difference in
median 24-hour returns (median return to buying
minus median return to selling).

We also compute 24-hour returns conditional on
reaching (“ask falls to integer” buys and “bid rises
to integer” sells) or crossing (“ask falls below inte-
ger” buys and “bid rises above integer” sells) inte-
ger thresholds. These returns are compared to the
analogous 24-hour returns conditional on reaching or
crossing nickel thresholds. The conditional returns for
reaching (crossing) integer thresholds yield positive
(mixed) abnormal 24-hour returns.

To determine the economic significance of these
24-hour returns, we make a rough estimate of the
wealth transfer implied by both the conditional and
unconditional returns. We find that the negative
abnormal returns for unconditional buys below (sells
above) round numbers yield an aggregate wealth
transfer of −$813 million per year. The positive abnor-
mal returns for conditional buys (sells) when the ask
falls (bid rises) to reach an integer yield an aggregate
wealth transfer of $40 million per year.

2. Psychological Foundations and
Related Findings in Other Fields

An extensive literature in behavioral finance—see
overviews of behavioral finance by Shleifer (2000),
Hirshleifer (2001), Barberis and Thaler (2003), Ritter
(2003), Shiller (2003), Subrahmanyam (2007), and
Sewell (2010)—shows that people cannot perform the
Herculean computations required of purely rational
optimizing agents when facing complex decisions.
Instead, people are “bounded rational” decision-
makers who implement “heuristics” in response to a
subset of cues (Simon 1956, 1957).

One type of heuristic is identified by Rosch (1975),
who found that people make judgments based on
cognitive reference points. Cognitive reference points
are defined as standard benchmarks against which
other stimuli are judged. Specifically with regard
to numbers, she found that multiples of 10 were
cognitive reference points for integer numbers in a
decimal number system. More generally, all round
numbers (integers, especially multiples of 10, and
midpoints between them in a decimal number sys-
tem) are cognitive reference points. Schindler and
Kirby (1997) show that it is easier to remember
round numbers. In the context of financial markets,
Goodhart and Curcio (1991) and Aitken et al. (1996)
argue that investors have an “attraction” to round-
numbered prices.

The left-digit effect is present when a change in
the left digit of a price leads people to jump from
one cognitive reference point to another (e.g., from
$7.00 to $6.00 if the price changes from $7.00 to $6.99).
Brenner and Brenner (1982) theorize that people econ-
omize on their limited mental memory in storing the
price of thousands of goods. They note that the eco-
nomic value of remembering the first digit is much
greater than the economic value of remembering the
second digit, which in turn is much greater than the
economic value of remembering the third digit, and
so on. Thomas and Morwitz (2005), in a series of five
experiments, provide a cognitive account of when and
why the left-digit effect manifests itself. They summa-
rize that:

The effect of a left-digit change on price magnitude
perceptions seems to be a consequence of the way the
human mind converts numerical symbols to analog
magnitudes on an internal mental scale 0 0 0 0 Since this
symbol to analog conversion is an automatic process,
the left digit effect seems to be occurring automatically,
that is, without consumers’ awareness 0 0 0encoding the
magnitude of a multi-digit number begins even before
we finish reading all the digits 0 0 0 0 Since we read num-
bers from left to right, while evaluating “2.99,” the
magnitude encoding process starts as soon as our eyes
encounter the digit “2.” Consequently, the encoded
magnitude of $2.99 gets anchored on the left most
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digit (i.e., $2) and becomes significantly lower than the
encoded magnitude of $3.00. (Thomas and Morwitz
2005, pp. 54–55)

Kahn et al. (2002) develop an interesting applica-
tion of the left-digit effect in the context of banking.
They construct a model in which a fraction of poten-
tial bank depositors truncate deposit yields to just the
left digit (e.g., truncate 6.27% to 6.00%). They deter-
mine the optimal bank policy for setting deposit rates,
and find empirical support for their predictions. In
accounting, Carslaw (1988), Thomas (1989), Niskanen
and Keloharju (2000), and Van Caneghem (2002) find
that company managers manage earnings to change
the left digit of reported earnings. Specifically, man-
agers use discretionary accruals in the knife edge
cases to report, say, $7 billion in earnings this period,
rather than $6.99 billion. Bader and Weinland (1932),
Knauth (1949), Gabor and Granger (1964), and Gabor
(1977) pioneer the study of the left-digit effect in the
realm of marketing. They find that retailers exploit
the left-digit effect by setting nine-ending prices (i.e.,
$6.99) on a wide variety of goods to make them
appear less expensive (based on the “underestimation
hypothesis”). Nine-ending prices are popular based
on surveys of retailers’ pricing practices (Schindler
and Kirby 1997) and based on Universal Product
Code retail scanning data (Stiving and Winer 1997).
Nine-ending prices are found to significantly increase
retailers’ profits (Anderson and Simester 2003, Blat-
tberg and Neslin 1990, Monroe 2003, and Stiving and
Winer 1997).

In market microstructure, an extensive literature
exists regarding trade price clustering on round num-
bers. Harris (1991) shows that during the $1/8th tick-
size era, the frequency of trade prices was highest on
integers, second-highest on half-dollars, third-highest
on quarters, and lowest on odd-eighths. Ikenberry
and Weston (2007) show that during the decimal era,
the frequency of trade prices from highest to lowest
is integers, half-dollars, quarters, dimes, nickels, and
pennies.2 To explain these patterns, Ball et al. (1985)
offer the price resolution hypothesis that uncertain
valuations lead to price clustering to reduce search
costs. Harris (1991) offers the negotiation hypothesis
that price clustering reduces the cost of negotiating
between traders and dealers. Ikenberry and Weston
(2007) hypothesize that investors have a psycholog-
ical preference for round numbers. They find that
price clustering during the decimal era far exceeds
what can be explained by the rational price resolu-
tion or negotiation hypotheses. They conclude that

2 Additional evidence of price clustering can be found in Osborne
(1962), Neiderhoffer (1965, 1966), Christie and Schultz (1994),
Kavajecz (1999), Chakravarty et al. (2001), Simaan et al. (2003),
Kavajecz and Odders-White (2004), and Ahn et al. (2005).

a psychological preference for round numbers is a
major cause of price clustering. None of the above
evidence directly relates to waves of buying or sell-
ing because the trades are unsigned. That is, the fre-
quency of trades by price point does not distinguish
between the buys and sells of liquidity demanders.

Recent papers by Bagnoli et al. (2006) and Johnson
et al. (2007) are the closest to our paper. Using a
sample of end-of-day prices, both of these studies
show that if the end-of-day price is just below an
integer (just above an integer), the overnight or next-
day return is lower (higher). However, our paper
offers three important distinctions. First, the two
aforementioned papers examine overnight or next-
day returns starting from closing prices only, whereas
we analyze all transactions throughout the day using
a high-frequency, intraday data set. Second, unlike
the previous two studies, we identify buys and sells
of liquidity demanders. Third, because we can iden-
tify buys and sells of liquidity demanders, we can
directly test three possible explanations for buy–sell
imbalances. Johnson et al. (2007) test a number of
different hypotheses that may explain their findings—
the left-digit effect is not one of their hypotheses—
and they come to no definite conclusion. Bagnoli et al.
(2006) only observe returns and then infer next-day
buying/selling behavior from the returns. Specifically,
they observe that closing prices ending in 9 (1) yield
negative (positive) overnight returns. They infer that
closing prices ending in 9 (1) predict future net selling
(buying) the following day. Hence, they conclude that
zero-ending round numbers represent a “psychologi-
cal barrier or hurdle that is difficult to break through”
(p. 16). We examine direct evidence of buys and sells
rather than inferring buying and selling patterns.

3. Hypotheses and Research Design
We will now formally state our research hypotheses.

Hypothesis 1 (H1). Buys should outnumber sells at
trade prices immediately below a round number, and sells
should outnumber buys at trade prices immediately above
a round number.

The above test checks buys and sells by trade price.
It is an unconditional test that does not check whether
this particular transaction price was reached after a
rise or drop in price. This unconditional test checks
for all three effects, but cannot distinguish between
them. We thus design conditional tests that offer the
ability to distinguish between effects. If asks fall (bids
rise) to reach or cross an integer, then both the left-
digit effect and the threshold trigger effect predict that
value traders who are demanding liquidity are moti-
vated to buy (sell), but the cluster undercutting effect
predicts imbalances only for the “crosses” but not
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for the “reaches.”3 Because we do not know whether
value traders trigger their trades at the threshold
and/or after crossing the threshold, we have three
alternative versions of our next hypothesis.

Hypothesis 2A (H2A) (Reach Only). Liquidity
demanders’ buys should outnumber their sells after ask
prices fall to reach an integer, and their sells should
outnumber their buys after bid prices rise to reach an
integer.

Hypothesis 2B (H2B) (Cross Only). Liquidity
demanders’ buys should outnumber their sells after ask
prices fall to cross an integer, and their sells should out-
number their buys after bid prices rise to cross an integer.

Hypothesis 2C (H2C) (Reach and Cross). Liquid-
ity demanders’ buys should outnumber their sells after ask
prices fall to reach an integer and to cross an integer, and
their sells should outnumber their buys after bid prices rise
to reach an integer and to cross an integer.

As a robustness check, we also consider the cases
in which the “ask rises while staying below integer”
and the “bid falls while staying above integer.” As
prices do not reach or cross integers in these cases,
the three round number effects have no predictions in
these cases.

We devise two additional tests of round number
effects. In the decimal era, as we move from a price
of $11 to $99 in dollar increments, the first left digit
changes around the two-digit integers 20, 30, 40, 50,
60, 70, 80, and 90. The second left digit changes
around other two-digit integers 11, 121 0 0 0 1191 21,
221 0 0 0 199. If the left-digit effect exists, a first left-digit
change should be more dramatic than a second left-
digit change. In other words, the change from $20.00
to $19.99 should have a greater effect than the change
from $21.00 to $20.99. This is because if the human
brain focuses only on the leftmost digit that is chang-
ing, the former is a change of $10, whereas the latter
is a change of $1. In addition to the left-digit effect,
the two other effects—the threshold trigger effect and
the cluster undercutting effect—also yield similar pre-
dictions because integers such as 20, 30, 40, 50, 60, 70,
80, and 90 are “more round” than integers such as 11,
121 0 0 0 119, 21, 221 0 0 0 199. This gives us our next test:

Hypothesis 3 (H3). When ask prices fall to hit an inte-
ger or fall below an integer, liquidity demanders’ buys

3 Note that we had said that when prices rise to reach or cross
an integer, and when prices fall to cross an integer, the left-digit
effect works. There is no left-digit effect when prices fall to reach an
integer. In our tests, however, we are looking at ask and bid prices.
When ask falls to reach an integer, the bid has already fallen to
cross the integer. Therefore, according to the left-digit effect, buys
may not change, but sells may drop, and so the buy–sell ratio may
increase.

should outnumber their sells more around 20, 30, 40, 50, 60,
70, 80, and 90 than around 11, 121 0 0 0 119, 21, 221 0 0 0 1291
31, 321 0 0 0 199. In addition, when bid prices rise to hit
an integer or rise above an integer, liquidity demanders’
sells should outnumber their buys more around 20, 30, 40,
50, 60, 70, 80, and 90 than around 11, 121 0 0 0 119, 21,
221 0 0 0 1291 31, 321 0 0 0 199.

The next test checks whether the effect of the
first left-digit change is greater around certain two-
digit integers than around one-digit integers. In other
words, the change from $20.00 to $19.99 should have
a greater effect than the change from $9.00 to $8.99.
This is because if the human brain focuses only on the
first left digit, the former is a change of $10, whereas
the latter is a change of $1. In addition to the left-
digit effect, the other two effects—the threshold trig-
ger effect and the cluster undercutting effect—also
yield similar predictions because integers such as 20,
30, 40, 50, 60, 70, 80, and 90 are “more round” than
integers such as 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. This
leads us to our final test:

Hypothesis 4 (H4). When ask prices fall to hit an
integer or fall below an integer, liquidity demanders’ buys
should outnumber their sells more around certain two-digit
integers (20, 30, 40, 50, 60, 70, 80, and 90) than around
one-digit integers (1, 2, 3, 4, 5, 6, 7, 8, 9, and 10). In addi-
tion, when bid prices rise to hit an integer or rise above an
integer, sells should outnumber buys more around certain
two-digit integers (20, 30, 40, 50, 60, 70, 80, and 90) than
around one-digit integers (1, 2, 3, 4, 5, 6, 7, 8, 9, and 10).

4. Data and Methodology
The intraday data used in this study come from the
New York Stock Exchange (NYSE) Trade and Quote
(TAQ) data set from 2001 to 2006. Because using the
full data set would involve massive computations, we
select a random sample of traded stocks. Following
the methodology of Hasbrouck (2009), a selected stock
must meet five criteria to be eligible: (1) it must be
a common stock; (2) it must be present on the first
and last TAQ master file for the year; (3) it must
have a primary listing on the NYSE, American Stock
Exchange, or National Association of Securities Deal-
ers Automated Quotations (NASDAQ); (4) it cannot
change primary exchange, ticker symbol, or its Com-
mittee on Uniform Security Identification Procedures
(CUSIP) code during the course of a year; and (5) it
must be listed in the Center for Research in Security
Prices (CRSP) database.

Starting with eligible firms in 2001, we divide them
into five quintiles based on price, and then ran-
domly select 20 firms from each quintile. We next
roll forward to 2002. If firms that were selected
in 2001 are eligible in 2002, then they remain in
the sample; otherwise, they are replaced by new
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firms that are randomly selected from all eligible
2002 firms. This process is repeated for each year
through 2006. Thus, in each year we have all trade
and quote data of a random sample of 100 traded
stocks. The body of our paper analyzes 137,335,376
trades from the decimal era.4 In the online appendix
to this paper, available at http://www.kelley.iu.edu/
cholden/RoundNumbers.pdf, we extend our analysis
to include 7,347,675 trades during the $1/8th tick-
size era and 15,992,073 trades during the $1/16th tick-
size era.5

We then apply the following screens to the trade
and quote data. Only quotes/trades during normal
market hours (between 9:30 a.m. and 4:00 p.m.) are
considered. Cases in which the bid or ask price or
bid or ask size is 0 are deleted. In addition, we delete
cases in which the bid price was greater than the ask
price, or the ask price was twice as big as the bid
price. We also remove all prices equal to or greater
than $100 and less than $2. The quote condition must
be normal, which excludes cases in which trading has
been halted. We calculate the National Best Bid and
Offer (NBBO) across all nine exchanges and across all
market makers for any given second. Each trade is
then matched to the NBBO in the prior second, as rec-
ommended in Henker and Wang (2006). The market
capitalization and the share volume of each stock are
obtained from CRSP. From CDA Spectrum we obtain
institutional ownership data on each firm.

The “ask falls below integer” sample is constructed
as follows. We include it in the data set if (i) the pre-
vious best ask is one integer higher than the current
best ask, (ii) the digits after the decimal point of the
previous best ask are in 60001 0107, and (iii) the digits
after the decimal point of the current best ask are in
60901 0997. If all three conditions are met, we then col-
lect all trades that occur while the ask quote remains
in 60901 0997. An example of the “ask falls below inte-
ger” sample would be all trades occurring after the
ask quote falls from $10.01 to $9.99. The correspond-
ing control sample is “ask falls below nickel,” which
is constructed as follows. We include it in the bench-
mark if (i) the previous best ask is the same inte-
ger as the current best ask, (ii) the digits after the
decimal point of the previous best ask are above a
nickel threshold N in 6N + 0001N + 0107, and (iii) the
digits after the decimal point of the current best ask
are below a nickel threshold N in 6N − 0101N − 0017.

4 The decimal era begins January 29, 2001, for NYSE and AMEX,
and April 2, 2001, for NASDAQ. Our data set ends Decem-
ber 31, 2006.
5 The TAQ data begins January 4, 1993. The $1/8 tick-size era ends
June 23, 1997, for NYSE; May 6, 1997, for AMEX; and June 1, 1997,
for NASDAQ. The $1/16 tick-size era ends January 28, 2001, for
NYSE and AMEX and March 31, 2001, for NASDAQ.

If all three conditions are met, we then collect all
trades that occur while the ask quote remains in
6N − 0101N − 0017. An example for the nickel thresh-
old N = 015 would be all trades occurring after the
best ask falls from $10.16 to $10.13.

The other samples and corresponding control sam-
ples are constructed in an analogous manner.6 In the
“ask falls below nickel,” “ask falls to nickel,” “bid
rises above nickel,” and “bid rises to nickel” control
samples, N is .15, .25, .35, .45, .55, .65, .75, and .85. In
the “ask rises while staying below nickel” and “bid
falls while staying above nickel” control samples, N
is .25, .35, .45, .55, .65, and .75. All of these nickel
thresholds are chosen to avoid any overlap between
an integer threshold sample and the corresponding
nickel threshold control sample.

5. Buy–Sell Imbalances of Liquidity
Demanders

5.1. Unconditional Buy–Sell Imbalances
For each .XX price point, we aggregate all buys
and sells for each firm in each year (e.g., trades
at $1.99, $2.99, $3.99, etc. are aggregated at the .99
price point). The buy–sell ratio is then computed for
each firm-year. This ratio is computed in three dif-
ferent ways: number of buys/number of sells, shares
bought/shares sold, and dollars bought/dollars sold.
The median of these three ratios over all firm-years is
then computed for each price point from .00 to .99.

Figure 1 shows the median number of buys/
number of sells by .XX price point, Figure 2 shows
the median shares bought/shares sold by .XX price

6 Specifically, the “ask falls to integer” includes all trades after the
ask drops from 60011 0107 to 60007 until the ask leaves [.00]. The cor-
responding control sample is “ask falls to nickel,” which includes
all trades after the ask drops from 6N + 0011N + 0107 to nickel
threshold N until the ask leaves 6N 7. The “bid rises above inte-
ger” includes all trades after the bid rises from 60901 0997 above an
integer threshold until the bid leaves 60011 0107. The corresponding
control sample is “bid rises above nickel,” which includes all trades
after the bid rises from 6N − 0101N − 0017 above a nickel threshold
N until the bid leaves 6N + 0011N + 0107. The “bid rises to inte-
ger” includes all trades after the bid rises from 60901 0997 to 60007
until the bid leaves 60007. The corresponding control sample is “bid
rises to nickel,” which includes all trades after the bid rises from
6N − 0101N − 0017 to nickel threshold N until the bid leaves 6N 7.
The “ask rises while staying below integer” includes all trades
after the ask rises from 60801 0897 to 60901 0997 until the ask leaves
60901 0997. The corresponding control sample is “ask rises while stay-
ing below nickel,” and includes all trades after the ask rises from
6N − 0201N − 0117 to 6N − 0101N − 0017, which is below the nickel
threshold N , until the ask leaves 6N − 0101N − 0017. The “bid falls
while staying above integer” includes all trades after the bid falls
from 60111 0207 to 60011 0107 until the bid leaves 60011 0107. The corre-
sponding control sample is “bid falls while staying above nickel,”
and includes all trades after the bid falls from 6N + 0111N + 0207 to
6N + 0011N + 0107, which is above the nickel threshold N , until the
bid leaves 6N + 0011N + 0107.
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Figure 1 Median (Number of Buys/Number of Sells) by Liquidity Demanders at .XX Price Points

.01

.06 .11

.16

.21
.26 .31

.41

.51

.56
.61

.66
.71 .76

.81

.96

.91
.86

.46.36

.89

.84

.79
.74.69

.64
.54

.44

.24

.14

.04

.59

.49

.19
.09

.39
.29

.34
.94

.99

0.6

0.8

1.0

1.2

1.4

1.6

1.8

.6
0

.5
5

.5
0

.4
5

.4
0

.3
5

.3
0

.2
5

.2
0

.1
5

.1
0

.0
5

.0
0

.8
0

.7
5

.7
0

.6
5

.8
5

.9
0

.9
5

M
ed

ia
n 

(n
um

be
r 

of
 b

uy
s/

nu
m

be
r 

of
 s

el
ls

)

.XX price points

point, and Figure 3 shows the median dollars
bought/dollars sold by .XX price point. All three
figures resemble waves. The wave peaks, which rep-
resent a high ratio of buys to sells by liquidity deman-
ders, occur at trade prices immediately below dollars,
half-dollars, quarters, dimes, and nickels (i.e., .04, .09,
.14, .19, etc.). The wave valleys, which represent a low
ratio of buys to sells by liquidity demanders, occur at

Figure 2 Median (Shares Bought/Shares Sold) by Liquidity Demanders at .XX Price Points
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trade prices immediately above dollars, half-dollars,
quarters, dimes, and nickels (i.e., .01, .06, .11, .16, etc.).

Interestingly, in all three figures, the highest ratio of
buys to sells by liquidity demanders occurs at trade
prices ending in .99, and the lowest ratio of buys to
sells by liquidity demanders occurs at trade prices
ending in .01. The second-highest ratio occurs at .49 and
the second-lowest ratio occurs at .51. In all three figures,
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Figure 3 Median (Dollars Bought/Dollars Sold) by Liquidity Demanders at .XX Price Points
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the buy–sell ratio at both .24 and .74 are higher than
any of the other .X4 price points, and the buy–sell
ratio at both .26 and .76 are lower than any of the
other .X6 price points. In other words, the largest
imbalances occur at the price points surrounding the
whole dollar, the second-largest imbalances surround
the half-dollar, and the third-largest imbalances sur-
round quarters.

Further investigation of Figures 1–3 also reveals
a regular pattern every 10 cents. Figure 4 explores
this further by showing the median buy–sell ratios
of liquidity demanders by penny-ending price points:
.X0, .X1, 0 0 0 1 .X9. Interestingly, the pattern of buy–sell

Figure 4 Buy–Sell Ratio of Liquidity Demanders by Penny-Ending
Price Points
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ratios by penny-ending price points is nearly identi-
cal for all three buy–sell ratio measures. Specifically,
we notice that the highest buy–sell ratios are at prices
ending in .X9 and the lowest buy–sell ratios are at
prices ending in .X1, surrounding dimes. Similarly,
the second-highest ratios are at prices ending in .X4
and the second-lowest ratios are at prices ending in
.X6, surrounding nickels.

Table 1 formalizes these observations by regressing
the buy–sell ratios of liquidity demanders for each
firm-year on dummy variables for price points that
are above or below round numbers. The three regres-
sions are based on three versions of the buy–sell ratio.
For all three regressions, the coefficients for Below Inte-
gers, Below Half-Dollars, Below Quarters, Below Dimes,
and Below Nickels are all positive and statistically sig-
nificant at the 1% level, indicating significant excess
buying below round numbers. Similarly, the coef-
ficients for Above Integers, Above Half-Dollars, Above
Quarters, Above Dimes, and Above Nickels are all nega-
tive and statistically significant at the 1% level, indi-
cating significant excess selling above round numbers.

Looking at the absolute value of the coefficients in
all three regressions, they are monotonically ordered
from most round to least round. Specifically, the coef-
ficients for the “below” thresholds adhere to the fol-
lowing pattern of inequalities: Below Integers > Below
Half-Dollars > Below Quarters > Below Dimes > Below
Nickels. Similarly, the absolute value of the “above”
coefficients adhere to the following pattern of inequal-
ities: �Above Integers� > �Above Half-Dollars� > �Above
Quarters�> �Above Dimes�> �Above Nickels�.
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Table 1 Buy–Sell Ratio Regressed on Price Point Dummies

Number of buys/ Shares bought/ Dollars bought/
number of sells p-value shares sold p-value dollars sold p-value

Intercept 10175∗ <000001 10338∗ <000001 10348∗ <000001
Below Integers (.99) 10493∗ <000001 20548∗ <000001 20626∗ <000001
Above Integers (.01) −00367∗ <000001 −00449∗ 000002 −00458∗ 000002
Below Half-Dollars (.49) 00904∗ <000001 10225∗ <000001 10240∗ <000001
Above Half-Dollars (.51) −00356∗ <000001 −00366∗ 000025 −00385∗ 000016
Below Quarters 40241 0745 00626∗ <000001 00859∗ <000001 00856∗ <000001
Above Quarters 40261 0765 −00268∗ <000001 −00297∗ 000006 −00309∗ 000004
Below Dimes 40091 0191 0291 0391 0591 0691 0791 0895 00483∗ <000001 00647∗ <000001 00642∗ <000001
Above Dimes 40111 0211 0311 0411 0611 0711 0811 0915 −00246∗ <000001 −00276∗ <000001 −00277∗ <000001
Below Nickels 40041 0141 0341 0441 0541 0641 0841 0945 00270∗ <000001 00370∗ <000001 00381∗ <000001
Above Nickels 40061 0161 0361 0461 0561 0661 0861 0965 −00177∗ <000001 −00222∗ <000001 −00227∗ <000001

N 55,503 55,503 55,503

Notes. The buy–sell ratio of liquidity demanders for each firm-year is regressed on dummy variables for price points that are below or above round numbers.
Three definitions of the buy–sell ratio are provided: number of buys/number of sells, shares bought/shares sold, and dollars bought/dollars sold. The sample
spans 2001–2006 in the decimal era and consists of 100 randomly selected stocks with annual replacement of stocks that do not survive.

∗Means statistically significant at the 1% level.

5.2. Conditional Buy–Sell Imbalance Tests
Panels A, C, D, and E in Table 2 offer the main condi-
tional results. Panel A in Table 2 shows the difference
in median (mean) buy–sell ratio of liquidity deman-
ders between the “ask falls below integer” sample
and the “ask falls below nickel” benchmark. The three
columns show the results for the three buy–sell ratio
measures: number of buys/number of sells, shares
bought/shares sold, and dollars bought/dollars sold.
All six differences (mean and median for each of the
three buy–sell measures) are positive values and are
statistically significant at the 1% level. This is evidence
of excess buying. Panel C contains the difference in
median (mean) buy–sell ratio of liquidity demanders
between the “ask falls to integer” sample and the
“ask falls to nickel” benchmark. All six differences
are large positive values and are statistically signifi-
cant at the 1% level. This is strong evidence of a huge
amount of excess buying. Panel D contains the dif-
ference in median (mean) buy–sell ratio of liquidity
demanders between the “bid rises to integer” sam-
ple and the “bid rises to nickel” benchmark. All six
differences are large negative values and four are sta-
tistically significant at the 1% level. This is evidence of
a huge amount of excess selling. Panel E contains the
difference in median (mean) buy–sell ratio of liquid-
ity demanders between the “bid rises above integer”
sample and the “bid rises above nickel” benchmark.
All six differences are negative values and three of the
differences—the median differences—are statistically
significant at the 1% level. This is evidence of excess
selling.

Panels B and F contain the results when prices do
not reach or cross an integer. The left-digit effect and
the round number effect have no predictions here.

Panel B gives the difference in median (mean) buy–
sell ratio of liquidity demanders between the “ask
rises while staying below integer” sample and the
“ask rises while staying below nickel” benchmark. All
six differences are positive values, but only three of
the differences are statistically significant at the 1%
level, considerably weaker evidence than was seen in
panel A. Thus, we see that excess buying when prices
fall to cross the integer (panel A) is slightly stronger
than when prices rise but do not cross the integer
(panel B). Panel F gives the difference in median
(mean) buy–sell ratio of liquidity demanders between
the “bid falls while staying above integer” sample
and the “bid falls while staying above nickel” bench-
mark. Five of the six coefficients are negative, but
only two are statistically significant. The magnitude
of the median coefficients in panel E is about 2.5 times
larger than the median coefficients in panel F. Thus,
we see that excess selling when prices rise to cross
the integer (panel E) is much stronger than the excess
selling when prices fall but do not cross the integer
(panel F).

Table 3 brings together the results of Table 2 in a
multivariate setting. Column (1) provides the results
from a logistic regression in which the dependent
variable is 1 for a buy trade by a liquidity deman-
der or 0 for a sell trade by a liquidity demander.
Similarly, column (2) provides the regression results
from an OLS regression in which the dependent vari-
able is +shares bought for a buy trade by a liq-
uidity demander or −shares sold for a sell trade
by a liquidity demander. Column (3) provides the
results from an OLS regression in which the depen-
dent variable is +dollars bought for a buy trade
by a liquidity demander or −dollars sold for a sell
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Table 2 The Difference in Median (Mean) Buy–Sell Ratios

Number of buys/ Shares bought/ Dollars bought/
number of sells (%) p-value shares sold (%) p-value dollars sold (%) p-value

Panel A: Ask Falls Below Integer vs. Ask Falls Below Nickel a

Difference in median buy–sell ratios 7∗ <000001 11∗ <000001 11∗ <000001
Difference in mean buy–sell ratios 8∗ <000001 21∗ <000001 20∗ <000001

Panel B: Ask Rises While Staying Below Integer vs. Ask Rises While Staying Below Nickel b

Difference in median buy–sell ratios 5∗ 000002 13∗ <000001 13∗ <000001
Difference in mean buy–sell ratios 9 000197 20 000634 20 000782

Panel C: Ask Falls to Integer vs. Ask Falls to Nickel c

Difference in median buy–sell ratios 29∗ <000001 75∗ <000001 75∗ <000001
Difference in mean buy–sell ratios 44∗ <000001 123∗ <000001 126∗ <000001

Panel D: Bid Rises to Integer vs. Bid Rises to Nickel d

Difference in median buy–sell ratios −21∗ <000001 −36∗ <000001 −36∗ <000001
Difference in mean buy–sell ratios −19∗ <000001 −17 001258 −19 000784

Panel E: Bid Rises Above Integer vs. Bid Rises Above Nickel e

Difference in median buy–sell ratios −5∗ 000005 −13∗ <000001 −15∗ <000001
Difference in mean buy–sell ratios −1 006875 −3 004531 −2 005648

Panel F: Bid Falls While Staying Above Integer vs. Bid Falls While Staying Above Nickel f

Difference in median buy–sell ratios −2 003154 −5∗ 000021 −6∗ 000016
Difference in mean buy–sell ratios 1 007292 −2 003759 −2 004007

Notes. The difference in median (mean) buy–sell ratios is for trades after reaching or crossing integer thresholds compared to trades after reaching or crossing
nickel thresholds. Four definitions of reaching or crossing a threshold are provided: when the ask drops below the threshold, when the ask drops to the
threshold, when the bid rises to the threshold, and when the bid rises above the threshold. Two cases in which thresholds are not penetrated are also considered:
when the ask rises while staying below the threshold and when the bid falls while staying above the threshold. Three definitions of the buy–sell ratio are
provided: number of buys/number of sells, shares bought/shares sold, and dollars bought/dollars sold. The sample spans 2001–2006 in the decimal era and
consists of 100 randomly selected stocks with annual replacement of stocks that do not survive. The p-values are based on the Wilcoxon test for medians and
the t-test for means.

aAsk Falls Below Integer is all trades after the ask drops from 60001 0107 to below the integer until the ask leaves 60901 0997. Ask Falls Below Nickel is all trades
after ask drops from 6N1N + 0107 to below nickel threshold N until leaving 6N − 0101 N − 0017.

bAsk Rises While Staying Below Integer is all trades after ask rises from 60801 0897 to 60901 0997 until ask leaves 60901 0997. Ask Rises While Staying Below
Nickelis all trades after ask rises from 6N − 0201 N − 0117 to 6N − 0101 N − 0017, which is below the nickel threshold N until the ask leaves 6N − 0101 N − 0017.

cAsk Falls to Integer is all trades after the ask drops from the 60011 0107 to [.00] until the ask leaves 60007. Ask Falls to Nickel is all trades after ask drops from
6N + 0011 N + 0107 to the nickel threshold 6N7 until the ask leaves 6N7.

dBid Rises to Integer is all trades after the bid rises from 60901 0997 to 60007 until the bid leaves 60007. Bid Rises to Nickel is all trades after the bid rises from
6N − 0101 N − 0017 to the nickel threshold N until the bid leaves 6N7.

eBid Rises Above Integer is all trades after bid rises from 60901 0997 to above the integer threshold until bid leaves 60011 0107. Bid Rises Above Nickel is all
trades after the bid rises from 6N − 0101 N − 0017 to above the nickel threshold N until the bid leaves 6N + 0011 N + 0107.

fBid Falls While Staying Above Integer is all trades after bid falls from 60111 0207 to 60011 0107 until bid leaves 60011 0107. Bid Falls While Staying Above Nickel
is all trades after the bid falls from 6N + 0111 N + 0207 to 6N + 0011 N + 0107, which is above the nickel threshold N until the bid leaves 6N + 0011 N + 0107.

∗Means statistically significant at the 1% level.

trade by a liquidity demander. The table reports the
difference in regression coefficients between each of
the six integer cases and their corresponding nickel
benchmarks. Although the coefficients are not shown,
each regression includes the following controls: trade
size dummies, price level dummies, firm size dum-
mies, institutional ownership dummies, share volume
dummies, penny-ending dummies (e.g., .X0 − .X9),
exchange dummies, and year dummies.

Table 3 confirms the univariate results found in
Table 2 and shows that they are robust to controlling
for firm-specific, trade-specific, exchange-specific, and
year-specific effects. Under each of the three buy–
sell specifications, the regression coefficients for the
“ask falls below integer,” the “ask falls to integer,”

the “bid rises to integer,” and the “bid rises above
integer” samples, less their corresponding nickel
benchmarks, are of the predicted sign and are statis-
tically significant.

Interestingly, the magnitude of the coefficients of
the “ask falls to integer” case is seven or more times
larger than the “ask falls below integer” case. Sim-
ilarly, the magnitude of the coefficients of the “bid
rises to integer” case is three or more times larger
than the “bid rises above integer” case. This is strong
evidence in favor of H2A—the reach-only version—
which states that excess trades are predominantly
determined by prices reaching the integer. This also
represents strong evidence against H2B and H2C—the
cross-only case and the reach-and-cross case, respec-
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Table 3 Multivariate Regressions: Integer vs. Nickel Thresholds

(1) (2) (3)

Logistic: OLS: +shares bought OLS: +dollars bought
Probability of for a buy or −shares for a buy or −dollars
a buy trade p-value sold for a sell p-value sold for a sell p-value

Ask Falls Below Integer−Ask Falls Below Nickel 00007∗ <000001 16076∗ <000001 444036∗ <000001
Ask Rises While Staying Below Integer−Ask Rises While −00001 002132 17050∗ <000001 508063∗ <000001

Staying Below Nickel
Ask Falls to Integer−Ask Falls to Nickel 00160∗ <000001 114092∗ <000001 31347057∗ <000001
Bid Rises to Integer−Bid Rises to Nickel −00209∗ <000001 −118082∗ <000001 −31858045∗ <000001
Bid Rises Above Integer−Bid Rises Above Nickel −00034∗ <000001 −33040∗ <000001 −11354048∗ <000001
Bid Falls While Staying Above Integer−Bid Falls While −00011∗ <000001 −9090∗ <000001 −338092∗ <000001
Staying Above Nickel

Trade size dummies YES YES YES
Price level dummies YES YES YES
Firm size dummies YES YES YES
Institutional ownership level dummies YES YES YES
Share volume level dummies YES YES YES
Exchange dummies YES YES YES
Year dummies YES YES YES
Penny-ending dummies YES YES YES
N 134,902,344 134,902,344 134,902,344

Notes. Column (1) is a logistic regression in which the dependent variable takes a value of 1 if the trade is a buy or a 0 if it is a sell. Column (2) is an OLS
regression where the dependent variable is +shares bought for a buy or −shares sold for a sell. Column (3) is an OLS regression where the dependent variable
is +dollars bought for a buy or −dollars sold for a sell. Controls for trade size, price, firm size, institutional holdings, volume, exchange, year, and penny-ending
are included in each regression. The sample spans 2001–2006 in the decimal era and consists of 100 randomly selected stocks with annual replacement of
stocks that do not survive.

∗Means statistically significant at the 1% level.

tively. If X% of the relevant traders trade when the
price reaches the threshold and (1 − X)% trade when
the price crosses the threshold, then X% appears to be
much larger than 50%.

Combining this result with the prior unconditional
evidence, we conclude that very little of the uncon-
ditional excess buying below round numbers and
excess selling above round numbers is because of
excess trading after crossing thresholds due to the
left-digit effect or the threshold trigger effect. Thus,
we conclude that the unconditional excess buying
below round numbers and excess selling above round
numbers that we saw in the unconditional tests
can be attributed mainly to the cluster undercutting
effect.

In the online appendix, we examine buy–sell imbal-
ances during the 1/8th tick-size era (before June 2,
1997) and during the 1/16th tick-size era (June 2,
1997, to January 28, 2001). The results are similar, but
weaker during these periods. We also examine the
robustness of our results for price level quintiles, for
institutional ownership terciles, and for share volume
terciles. With few exceptions, the results are similar
across all classifications.

5.3. Other Conditional Buy–Sell Imbalance Tests
Table 4 shows results from testing H3 in a multi-
variate setting. The table reports the difference in

coefficients between first left-digit changes and sec-
ond left-digit changes for each price path. We find
that the first left-digit change is stronger around two-
digit integers than second left-digit changes around
two-digit integers. Although the difference in coeffi-
cients correctly predicts the sign in 11 of 12 cases,
it is statistically significant at the 1% level in only 3
of the 12 tests. This provides only modest support
for H3 after controlling for other influences. Table 5
shows results from testing H4 in a multivariate set-
ting. The table reports the difference in coefficients
between the first left-digit change around two-digit
integers and the first left-digit change around one-
digit integers. We find that the first left-digit change is
stronger around two-digit integers than around one-
digit integers in 9 of 12 cases. In all 3 of the cases in
which the sign is not correctly predicted, the result
is not statistically significant. Of the 9 cases in which
the sign is correctly predicted, statistical significance
exists for 8 of them. On balance, this supports H4 after
controlling for other influences.

6. 24-Hour Returns
6.1. Unconditional Returns
We begin this section with unconditional returns. For
each .XX price point, we compute 24-hour returns in
two different ways. First, we compute 24-hour trade
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Table 4 Multivariate Regressions: First vs. Second Digit Changes

(1) (2) (3)

Logistic: OLS: +shares bought OLS: +dollars bought
Probability of for a buy or −shares for a buy or −dollars
a buy trade p-value sold for a sell p-value sold for a sell p-value

(Ask Falls Below Integer ) × (First Left-Digit Change) 00009∗ 000029 50494 0.3673 −2200682 001522
− (Ask Falls Below Integer ) × (Second Left-Digit Change)

(Ask Falls to Integer ) × (First Left-Digit Threshold) 00014 000819 290876 0.0679 8300711 000748
− (Ask Falls to Integer ) × (Second Left-Digit Threshold)

(Bid Rises to Integer ) × (First Left-Digit Change) −00044∗ <000001 −420337 0.0125 −111660614 000157
− (Bid Rises to Integer ) × (Second Left-Digit Change)

(Bid Rises Above Integer ) × (First Left-Digit Change) −00055∗ <000001 −210014 0.2307 −7550117 001306
− (Bid Rises Above Integer ) × (Second Left-Digit Change)

Trade size dummies YES YES YES
Price level dummies YES YES YES
Firm size dummies YES YES YES
Institutional ownership level dummies YES YES YES
Share volume level dummies YES YES YES
Exchange dummies YES YES YES
Year dummies YES YES YES
Penny-ending dummies YES YES YES
N 74,819,798 74,819,798 74,819,798

Notes. Column (1) is a logistic regression in which the dependent variable takes a value of 1 if the trade is a buy or a 0 if it is a sell. Column (2) is an OLS
regression where the dependent variable is +shares bought for a buy or −shares sold for a sell. Column (3) is an OLS regression where the dependent
variable is +dollars bought for a buy or −dollars sold for a sell. Controls for trade size, price, firm size, institutional holdings, volume, exchange, year, and
penny-ending are included in each regression. Interaction terms select cases where reaching or crossing the threshold causes a first left-digit change (e.g.,
ask price falls from $30.01 to $29.99) versus causing a second left-digit change (e.g., ask price falls from $21.01 to $20.99). The sample spans 2001–2006 in
the decimal era and consists of 100 randomly selected stocks with annual replacement of stocks that do not survive.

∗Means statistically significant at the 1% level.

price returns. For every buy trade observation, we
compute the return to buying at the actual trade price
and then selling at the bid price 24 hours later to close
the position.7 Similarly, for every sell trade observa-
tion, we compute the return to (short) selling at the
actual trade price and then buying at the ask price
24 hours later to close the position. Second, we com-
pute 24-hour midpoint returns. For every buy trade
observation, we compute the return to buying at the
contemporaneous quote midpoint price and then sell-
ing at the quote midpoint price 24 hours later to
close the position. For every sell trade observation,
we compute the return to (short) selling at the con-
temporaneous quote midpoint price and then buying
at the quote midpoint price 24 hours later to close the
position. Thus, for each .XX price point, we end up
with four return categories: (1) the 24-hour trade price
return to buying, (2) the 24-hour midpoint return to
buying, (3) the 24-hour trade price return to selling,
and (4) the 24-hour midpoint return to selling.

Figure 5 plots the buy–sell ratios of all 100 price
points on the left y-axis and the difference in median

7 For example, if there is a buy at 11:00 a.m. on day t, then a
return is computed from buying at the trade price to selling at the
bid price at 11:00 a.m. on day t + 1. Twenty-four-hour returns are
slightly cleaner than returns until the end of the day, because they
avoid the end-of-day pricing anomaly documented in Harris (1989).

24-hour trade price returns (median return to selling
minus median return to buying) at all 100 price points
on the right y-axis. The solid curve is the buy–sell
ratio. The dashed curve is the difference in median
24-hour trade price returns. Clearly they are related!
As before, the solid curve of the buy–sell ratio oscil-
lates in a smooth wave reaching a peak at one penny
below each round number and reaching a valley at
one penny above each round number. The dashed
curve of the difference in median 24-hour trade price
returns almost always reaches a peak at one penny
below each round number and reaches a valley at one
penny above each round number. The two curves are
very similar and the correlation between the two vari-
ables is 0.58.

Table 6 reports the regression of the difference in
median 24-hour trade price or midpoint returns (i.e.,
median return to buying minus median return to sell-
ing)8 for each firm-year on dummy variables for the
price points that are immediately above and below
round numbers. We see a clear pattern of how liq-
uidity demanders who buy below a round number
threshold have lower returns than those who sell
below that round number threshold. Likewise, those

8 In Tables 6 and 7 the dependent variable is the median return to
buying minus the median return to selling, which is easier to inter-
pret, but it is the opposite convention to that used in Figures 5 and 6.
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Table 5 Multivariate Regressions: Two-Digit vs. One-Digit Integers

(1) (2) (3)
OLS: OLS:

Logistic: +shares bought +dollars bought
Probability for a buy for a buy

of a buy or −shares sold or −dollars sold
trade p-value for a sell p-value for a sell p-value

[(Ask Falls Below Integer ) × (First Left-Digit Change in Two-Digit Integers ≥20) 000271∗ <000001 −100670 001261 11056033∗ <000001
−(Ask Falls Below Nickel ) × (Nickel Thresholds> 20)]

−[(Ask Falls Below Integer ) × (First Left-Digit Change in One-Digit Integers <10)
−(Ask Falls Below Nickel ) × (Nickel Thresholds< 10)]

[(Ask Falls to Integer ) × (First Left-Digit Threshold in Two-Digit Integers≥20) −000176 000695 3023 008687 41611049∗ <000001
−(Ask Falls to Nickel ) × (Nickel Thresholds> 20)]

−[(Ask Falls to Integer ) × (First Left-Digit Threshold in One-Digit Integers<10)
−(Ask Falls to Nickel ) × (Nickel Thresholds< 10)]

[(Bid Rises to Integer ) × (First Left-Digit Change in Two-Digit Integers≥20) −000390∗ <000001 −68069∗ 000005 −51657005∗ <000001
−(Bid Rises to Nickel ) × (Nickel Thresholds> 20)]

−[(Bid Rises to Integer ) × (First Left-Digit Change in One-Digit Integers≤10)
−(Bid Rises to Nickel ) × (Nickel Thresholds< 10)]

[(Bid Rises Above Integer ) × (First Left-Digit Change in Two-Digit Integers≥20) −000235∗ <000001 5008 008317 −21297090∗ 000007
−(Bid Rises Above Nickel ) × (Nickel Thresholds> 20)]

−[(Bid Rises Above Integer ) × (First Left-Digit Change in One-Digit Integers≤10)
−(Bid Rises Above Nickel ) × (Nickel Thresholds< 10)]

Trade size dummies YES YES YES
Price level dummies YES YES YES
Firm size dummies YES YES YES
Institutional ownership level dummies YES YES YES
Share volume level dummies YES YES YES
Exchange dummies YES YES YES
Year dummies YES YES YES
Penny-ending dummies YES YES YES
N 74,819,798 74,819,798 74,819,798

Notes. Column (1) is a logistic regression in which the dependent variable takes a value of 1 if the trade is a buy or a 0 if it is a sell. Column (2) is an OLS
regression where the dependent variable is +shares bought for a buy or −shares sold for a sell. Column (3) is an OLS regression where the dependent
variable is +dollars bought for a buy or −dollars sold for a sell. Controls for trade size, price, firm size, institutional holdings, volume, exchange, year, and
penny-ending are included in each regression. Interaction terms select cases where reaching or crossing the threshold causes a first left-digit change in two-
digit integers ≥$20 (e.g., ask price falls from $30.01 to $29.99) versus causing a first left-digit change in one-digit integers <10 (e.g., ask price falls from
$9.01 to $8.99). The sample spans 2001–2006 in the decimal era and consists of 100 randomly selected stocks with annual replacement of stocks that do not
survive.

∗Means statistically significant at the 1% level.

who sell above a round number threshold have lower
returns than those who buy above that round num-
ber threshold. Specifically, in the first column, which
reports the coefficients for the differential trade price
returns, we find that .99 has a negative coefficient
(a lower differential return between buying and sell-
ing than the other price points) and .01 has a positive
coefficient (a higher differential return between buy-
ing and selling than the other price points). Similarly,
below half-dollars is negative and above half-dollars
is positive. Below quarters is negative and above
quarters is positive, and so on. Although the signs
alternate, the coefficients are sometimes not statisti-
cally significant. In the second column, which reports
the coefficients for the differential midpoint returns,
the same positive/negative pattern is true, though
with diminished magnitude.

Figure 6 plots the buy–sell ratios for penny-ending
price points (.X0, .X1, .X2, 0 0 0 1 .X9) on the left y-axis

and the difference in median 24-hour trade price
returns (median return to selling minus median
return to buying) for penny-ending price points on
the right y-axis. The buy–sell ratios and the difference
in returns both form W-shaped figures that almost
perfectly overlap. Clearly, there is a strong relation-
ship between buy–sell ratios and the difference in
returns. The correlation between the two variables
is 0.87.

Chordia et al. (2002) show that daily “order imbal-
ance” (number of buy trades minus the number of
sell trades),9 is a major determinant of daily stock
returns. The buy–sell ratio is a nonlinear transfor-
mation of buys minus sells. In the spirit of Chordia

9 More specifically, they examine three versions of order imbal-
ance (number of buys minus number of sells, shares bought minus
shares sold, and dollars bought minus dollars sold), which map
into our three buy–sell ratios.
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Figure 5 Median Buy–Sell Ratio Compared to the Difference in Median 24-Hour Trade Price Returns by .XX Price Points
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Table 6 Difference in Median 24-Hour Returns Regressed on Price Point Dummies

Difference in median Difference in median
24-hour trade price returns 24-hour midpoint returns
(median return to buying− (median return to buying−

median return to selling) (%) p-value median return to selling) (%) p-value

Intercept 0011∗ <000001 0012∗ <000001
Below Integers (.99) −0025∗ 000019 −0018∗ 000090
Above Integers (.01) 0014 000709 0007 003145
Below Half-Dollars (.49) −0012 001372 −0011 001360
Above Half-Dollars (.51) 0020 000104 0010 001520
Below Quarters 40241 0745 −0010 000772 −0007 001440
Above Quarters 40261 0765 0011 000539 0005 003613
Below Dimes 40091 0191 0291 0391 0591 0691 0791 0895 −0011∗ 000001 −0010∗ 000003
Above Dimes 40111 0211 0311 0411 0611 0711 0811 0915 0006 000392 0004 001390
Below Nickels 40041 0141 0341 0441 0541 0641 0841 0945 −0003 003924 −0002 004304
Above Nickels 40061 0161 0361 0461 0561 0661 0861 0965 0009∗ 000015 0006 000361

N 55,838 55,838

Notes. The difference in median 24-hour trade price (midpoint) returns for each firm-year is regressed on dummy variables for price points that are below or
above round numbers. The 24-hour trade price (midpoint) return to buying is the return from buying at the trade price (midpoint) when a buy trade is observed
and closing the position 24-hours later at the bid (midpoint) price. The 24-hour trade price (midpoint) return to selling is the return from short selling at the
trade price (midpoint) when a sell trade is observed and closing the position 24-hours later at the ask (midpoint) price. The difference in median returns is the
median return to buying minus the median return to selling. The sample spans 2001–2006 in the decimal era and consists of 100 randomly selected stocks
with annual replacement of stocks that do not survive.

∗Means statistically significant at the 1% level.
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Figure 6 Median Buy–Sell Ratio Compared to the Difference in
Median 24-Hour Trade Price Returns by Penny-Ending
Price Points
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et al. (2002), Table 7 shows the results of difference
in median 24-hour returns (median return to buy-
ing minus median return to selling) for each firm-
year regressed on the buy–sell ratio for each firm-year.
Panel A shows the regressions by .XX price point,
and panel B shows regressions by penny-ending price
point. Looking at panel A, we find that the buy–
sell ratio is a statistically significant determinant of
the difference in median 24-hour returns in both
columns. A higher buy–sell ratio leads to a more neg-
ative difference in median 24-hour returns. Turning
to panel B, the buy–sell ratio is also a statistically
significant determinant of median 24-hour returns in
both columns. Again, a higher buy–sell ratio leads to
a more negative difference in median 24-hour returns.

In summary, behavioral effects cause buy–sell
imbalances around round numbers. These buy–sell
imbalances are in turn a major determinant of the
variation by price point of average 24-hour returns.

6.2. Conditional Returns
We now turn to conditional returns, which is a com-
putation of returns conditional on the price path. We
compute the 24-hour returns for buying after the ask
falls to reach or cross the integer, and for selling
after the bid rises to reach or cross the integer. These
returns are compared to analogous 24-hour returns
relative to benchmark nickel price points.

Table 8 reports the results of multivariate regres-
sions. In panel A, the dependent variable is the
24-hour trade price return. In panel B, the dependent
variable is 24-hour midpoint return. The first four
rows of both panels report abnormal 24-hour returns,
defined as the difference in regression coefficients
between four indicator variables for the “ask falls
below integer buys,” “ask falls to integer buys,” “bid
rises to integer sells,” and “bid rises above integer

sells” samples and the corresponding indicator vari-
ables for the “ask falls below nickel buys,” “ask falls
to nickel buys,” “bid rises to nickel sells,” and “bid
rises above nickel sells” benchmarks.10 Each regres-
sion includes controls for price level, firm size, institu-
tional ownership, share volume, penny-ending (e.g.,
.X0–.X9), exchange, and year. The first column repre-
sents the full sample and includes a further control
for trade size.

First consider the two crossing cases in the Full
Sample column of panel A. “Ask falls below inte-
ger buys” and “bid rises above integer sells” exhibit
abnormal 24-hour trade price returns of −0.07% and
0.01%, respectively. The former is significantly neg-
ative with a p-value less than 0.0001, and the latter
is insignificant. Next consider the two reaching cases.
“Ask falls to integer buys” and “bid rises to integer
sells” exhibit abnormal 24-hour trade price returns
of 0.06% and 0.04%, respectively. Both reaching cases
are significantly positive, with p-values below 0.0001.
The abnormal 24-hour midpoint returns are relatively
similar in sign and magnitude, but only three of the
four midpoint returns are significant at the 1% level.
To summarize, the two cross cases yield mixed abnor-
mal returns, whereas the two reach cases yield pos-
itive abnormal returns that are significantly positive
in three out of four returns.

The next three columns break out the sample by
trade size. Small trades are those involving fewer
than 500 shares, medium trades involve 500 to 2,000
shares, and large trades are those in excess of 2,000
shares. First consider the two crossing cases. “Ask
falls below integer buys” yield abnormal 24-hour
trade price returns that are significantly negative
for small, medium, and large trades. The magnitude
of negative return becomes larger for larger trades,
increasing from −7 basis points (bpts) for small trades
to −9 bpts for medium trades to −13 bpts for large
trades. “Bid rises above integer sells” yield insignifi-
cant abnormal 24-hour trade price returns for all trade
sizes. The midpoint returns follow the same pattern.
Next consider the two reaching cases. “Ask falls to
integer buys” and “bid rises to integer sells” yield
abnormal 24-hour trade price returns that are sig-
nificantly positive for small and medium trades, but
insignificant for the large trades. The magnitude of
the positive returns decreases as trade size increases.
The midpoint returns follow a similar pattern.11 In
summary, the conditional returns for crossing cases

10 Note that the abnormal return coefficients do not imply that
arbitrage profits can be made net of transaction costs. Rather, they
suggest that liquidity demanders who are influenced by round
number effects earn lower returns on these trades compared to
other benchmark liquidity demanders.
11 Lee and Radhakrishna (2000) develop a methodology for break-
ing trades into small, medium, and large sizes that takes into
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Table 7 Difference in Median 24-Hour Returns Regressed on the Buy–Sell Ratio

Difference in median Difference in median
24-hour trade price returns 24-hour midpoint returns
(median return to buying − (median return to buying −

median return to selling) p-value median return to selling) p-value

Panel A: By .XX price point
Buy–sell ratio −0000043∗ <000001 −0000048∗ <000001
N 55,483 55,483

Panel B: By penny-ending price point
Buy–sell ratio −0000084∗ <000001 −0000050∗ 000008
N 5,945 5,945

Notes. The difference in median 24-hour trade price (midpoint) returns for each firm-year is regressed on the buy–
sell ratio for the same firm-year. The 24-hour trade price (midpoint) return to buying is the return from buying
at the trade price (midpoint) when a buy trade is observed and closing the position 24-hours later at the bid
(midpoint) price. The 24-hour trade price (midpoint) return to selling is the return from short selling at the trade
price (midpoint) when a sell trade is observed and closing the position 24-hours later at the ask (midpoint) price.
The difference in median returns is the median return to buying minus the median return to selling. The sample
spans 2001–2006 in the decimal era and consists of 100 randomly selected stocks with annual replacement of
stocks that do not survive.

∗Means statistically significant at the 1% level.

yield mixed returns, but the conditional returns for
reach cases are robustly positive.

To determine the economic significance of thresh-
old trigger effects, we make a very rough estimate of
the wealth transfer implied by the unconditional and
conditional returns. For the unconditional returns, we
examine the size and frequency of buy trades below
round numbers and sell trades above round num-
bers. We also compute the abnormal return to buying
below (selling above) round numbers by regressing
the median 24-hour trade price return to buying (sell-
ing) on dummy variables for below round numbers
and for above round numbers.12 Together this infor-
mation can be used to determine the aggregate size
of the unconditional wealth transfer/year as follows:

Wealth transfer/year from buys below and
sells above round numbers
=
[

4Abnormal return to Buying Below Integers5
×4Agg. dollar value of Buying Below Integers5
+···+4Abnormal return to Buying Below Nickels5
×4Agg. dollar value of Buying Below Nickels5
+4Abnormal return to Selling Above Integers5
×4Agg. dollar value of Selling Above Integers5
+···+4Abnormal return to Selling Above Nickels5

×4Agg. dollar value of Selling Above Nickels5
]

×
[

431721 eligible firms/year on average5
/

4100 firms/year in our sample5
]/

46 years5
=−$1102102 million/year0

account Fama–French market capitalization terciles by year. In
unreported results, we repeat the Table 8 trade size breakout using
the Lee and Radhakrishna (2000) classification scheme, and obtain
very similar results.
12 See Table A-8 in the online appendix.

The last multiplier scales our sample size up to the
full size of the TAQ data set during 2001–2006. We
assume that our random sample of 100 firms is repre-
sentative of all firms. The −$1,021.2 million/year fig-
ure is based on abnormal 24-hour trade price returns.
Repeating the calculation using abnormal 24-hour
midpoint returns yields −$605.5 million/year. Aver-
aging the two estimates, we obtain an unconditional
yearly wealth transfer above and below round num-
bers of approximately −$813 million. Clearly, this is
a sizable amount of money. It should also be noted
that this is a somewhat conservative estimate of the
yearly wealth transfer, because we are ignoring inel-
igible firms, such as those that change their listing
exchange, ticker symbol, or CUSIP code.

We make a similar back-of-the-envelope computa-
tion for the conditional reach cases:

Wealth transfer/year from buys when the ask falls
and sells when the bid rises to an integer

=
[

4Abnormal return to Ask Falls to Integer Buys5
×4Agg. dollar value of Ask Falls to Integer Buys5
+4Abnormal return to Bid Rises to Integer Sells5
×4Agg. dollar value of Bid Rises to Integer Sells5

]

×
[

431721 eligible firms/year on average5
/

4100 firms/year in our sample5
]/

46 years5
=$5908 million/year.

The $59.8 million/year figure is based on abnor-
mal 24-hour trade price returns from panel A in
Table 8. Repeating the calculation using abnormal 24-
hour midpoint returns from panel B in Table 8 yields
$19.4 million/year. Averaging, we obtain a condi-
tional yearly wealth transfer on integers of approxi-
mately $40 million.
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Table 8 Multivariate Regressions: 24-Hour Returns

Full Small trades: Medium trades: Large trades:
sample p-value <500 shares p-value 500 − 21000 shares p-value >2,000 shares p-value

Panel A: Multivariate regressions on 24-hour trade price returns
Ask Falls Below Integer Buys−Ask Falls −000739%∗ <000001 −000695%∗ <000001 −000914%∗ <000001 −001273%∗ <000001
Below Nickel Buys

Ask Falls to Integer Buys−Ask Falls to 000556%∗ <000001 000574%∗ <000001 000481%∗ <000001 000405% 000966
Nickel Buys

Bid Rises to Integer Sells−Bid Rises to 000406%∗ <000001 000421%∗ <000001 000417%∗ 000017 000300% 002500
Nickel Sells

Bid Rises Above Integer Sells−Bid Rises 000101% 000406 000073% 001637 000334% 000312 −000330% 003392
Above Nickel Sells

Trade size dummies YES NO NO NO
Price level dummies YES YES YES YES
Firm size dummies YES YES YES YES
Institutional ownership level dummies YES YES YES YES
Share volume level dummies YES YES YES YES
Exchange dummies YES YES YES YES
Year dummies YES YES YES YES
Penny-ending dummies YES YES YES YES
N 74,481,450 62,673,568 9,703,605 2,104,277

Panel B: Multivariate regressions on 24-hour midpoint returns
Ask Falls Below Integer Buys−Ask Falls −000741%∗ <000001 −000694%∗ <000001 −000892%∗ <000001 −001289%∗ <000001
Below Nickel Buys

Ask Falls to Integer Buys−Ask Falls to 000214%∗ <000001 000242%∗ <000001 000080% 005122 000012% 009610
Nickel Buys

Bid Rises to Integer Sells−Bid Rises to 000091% 000538 000133%∗ 000099 000012% 009256 −000350% 001738
Nickel Sells

Bid Rises Above Integer Sells−Bid Rises 000151%∗ 000019 000116% 000246 000406%∗ 000081 −000270% 004255
Above Nickel Sells

Trade size dummies YES NO NO NO
Price level dummies YES YES YES YES
Firm size dummies YES YES YES YES
Institutional ownership level dummies YES YES YES YES
Share volume level dummies YES YES YES YES
Exchange dummies YES YES YES YES
Year dummies YES YES YES YES
Penny-ending dummies YES YES YES YES
N 74,481,450 62,673,568 9,703,605 2,104,277

Notes. In panel A, the dependent variable is 24-hour trade price return. In panel B, the dependent variable is 24-hour midpoint return. Small trades are less
than 500 shares, medium trades are from 500 to 2,000 shares, and large trades are greater than 2,000 shares. Controls for price, firm size, institutional
holdings, volume, exchange, year, and penny-ending are included in each regression. The first regression also includes a control for trade size. The sample
spans 2001–2006 in the decimal era and consists of 100 randomly selected stocks with annual replacement of stocks that do not survive.

∗Means statistically significant at the 1% level.

7. Conclusion
Using a random sample of more than 100 million
stock transactions, we find excess buying by liquid-
ity demanders at all price points one penny below
round numbers (e.g., .04, .09, .14, .19, etc.) and excess
selling by liquidity demanders at all price points one
penny above round numbers (e.g., .01, .06, .11, .16,
etc.). We find that the size of the buy–sell imbalance is
monotonically ordered by the roundness of the adja-
cent round number (i.e., largest imbalance above and
below integers, second-largest above and below half-
dollars, etc.). This and further evidence supports the
cluster undercutting effect.

Conditioning on the price path, we find strong
excess buying (selling) by liquidity demanders when
the ask falls (bid rises) to reach the integer. We find
relatively little buy–sell imbalance when the ask falls
(bid rises) to cross the integer. This evidence sup-
ports the left-digit effect and threshold trigger effect.
All of these findings hold true under three different
measures of the buy–sell ratio, in multivariate regres-
sions with various controls, and in multiple robust-
ness checks.

We find that 24-hour returns vary by price point,
and buy–sell imbalances are a major determinant of
that variation across price points. This motivates us
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to estimate the profits or losses incurred by trading
on and around round numbers. We find that uncondi-
tional buys below (sells above) round numbers yield
negative abnormal returns with an aggregate wealth
transfer of −$813 million per year. Conditional buys
(sells) when the ask falls (bid rises) to reach an inte-
ger yield positive abnormal returns with an aggregate
wealth transfer of $40 million per year.

Finally, we consider the wider implications of
our study. Liquidity-supplying, limit order submit-
ters might consider fighting their behavioral ten-
dency to cluster on round numbers. It appears that
cluster undercutting is a relatively profitable strat-
egy that might be an improvement over clustering.
Similarly, liquidity-demanding value traders might
consider fighting their behavioral tendency to buy
below (sell above) round numbers. This could be done
by intentionally switching their trading strategies
to non-round price thresholds for action. Researchers
might explore whether similar buy–sell imbalances
on and around round numbers and similar varia-
tions by price point of average 24-hour returns exist
in other asset classes, time periods, and countries.
Directions for future research might include whether
order imbalance trading halts vary by price point and
whether arbitrage trading profits vary by price point.
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