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We develop an integrated model in which a risk-neutral informed trader optimally
chooses any combination of a market buy, a market sell, a limit buy including the
limit buy price, and a limit sell including the limit sell price. Limit orders undercut
the market maker and generate transactions inside the bid—ask spread. The informed
trader exploits limit orders by submitting market orders even when the terminal
value is inside the spread. When the terminal value is above the bid, a combined
market buy-limit sell is more profitable than a market buy only. We obtain an
analytic solution. Journal of Economic Literature Classification Numbers: D40, D82,
G12. Gl4. ©1995 Academic Press. Inc.

1. INTRODUCTION

Market orders and limit orders are the dominant instruments for trading
on most security exchanges.! For example, in the last six months of 1993
the New York Stock Exchange (NYSE) Superdot system processed 11.7

* We thank the editors and referees whose insightful comments have significantly improved
the paper. We also thank David P. Brown, Richard Feinberg. John McConnell, Maureen
O'Hara, Eric Rasmusen, Asani Sarkar, Duane Seppi, Anjan V. Thakor, Adel Turki, Richard
Widdows, and the seminar participants at the 1995 American Finance Association meetings
for helpful comments. We alone are responsible for any errors.

" A market order is a request to buy (or sell) a fixed number of shares at the current price
for buying (or selling). It yields a certain quantity, but an uncertain price. A limit order is a
request to buy (or sell) a fixed number or up to a fixed number of shares at a limit buy (sell)
price set by the limit order submitter. It yields a certain price, but an uncertain quantity.
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million market orders and 19.3 million limit orders.? Yet until recently most
models of market microstructure assumed that only market orders could
be used for trading. In this paper, we develop an integrated model in
which a risk-neutral informed trader can choose optimal quantities of four
different kinds of orders to submit: a market buy (MB), a market sell (MS),
a limit buy (LB) including the optimal limit buy price, and a limit sell (LS)
including the optimal limit sell price.

Glosten and Milgrom (1985) (hereafter GM) develop an adverse selection
model in which privately informed traders submit either a MB or a MS in
order to optimally exploit their information. In GM, a market maker quotes
a bid price and an ask price. Then, one agent per round can submit a MB
or a MS for a unit quantity. A risk-neutral informed trader optimally
chooses a bang-bang strategy. That is, one unit is bought (sold) when the
private, expected value of the security is above the ask (below the bid) and
zero units are traded when the expected value is inside the bid—ask spread.’
The two parties in each transaction are an outside trader and the market
maker. All transactions take place at either the bid or the ask.

Our model extends the GM framework to include limit orders. In contrast
with GM, many of the trades in our model do not involve the market
maker, but instead result from limit orders crossing with market orders.
Traders set limit buy prices below the ask and limit sell prices above the
bid (otherwise they would never execute in our single-period model). Thus,
limit orders generate transactions inside the spread. These results corre-
spond to what is observed in practice. For example, the 1993 NYSE Fact
Book reports that 82.9% of NYSE transactions do not involve the market
maker. Further, McInish and Wood (1992) document ““hidden” limit orders
crossing with market orders at prices inside the spread and Shapiro (1993)
reports that when the spread is greater than $3, 66% of NYSE trades occur
inside the spread.

The presence of limit orders inside the spread creates an additional
opportunity for the informed trader to exploit. We capture this feature of
the informed trader’s strategy. Under minimal distributional assumptions,
we find that the informed trader sometimes chooses to submit market
orders when the terminal value of the security is inside the bid-ask spread.
To illustrate this, consider a MB submitted by the informed trader. Some-
times it executes at a price below the ask by crossing with a LS submitted
by an uninformed trader* and it never executes above the ask. Thus the
expected execution price is below the ask. Hence, there are some terminal

2 These figures are for placed, not executed, orders. We thank Colin Moriarty of the NYSE
for these figures.

3 Admati and Pfleiderer (1989) extend the GM model to allow many risk-neutral, informed
traders to execute market orders in the same round. The optimal strategy remains bang-bang.

* OQur model also permits an informed MB to cross with an uninformed MS inside the spread.
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values above the expected execution price and below the ask for which it
is profitable for the informed trader to submit a MB.>

We also find a mutually beneficial interaction between opposing order
types. For example, consider a combined MB and LS submission. Some-
times the two orders will cross and the informed trader will end up with a
net zero trade. But this is actually a good thing. Even if the MB makes a
profit on average, there are some states in which it will execute at a loss.
Careful choice of the LS price can eliminate some of the loss states. Hence,
we find that any time the terminal value of the security is above the bid,
a combined MB-LS is more profitable than a MB alone. This intuition of
limit orders acting as a “‘safety net” for market orders in the opposite
direction is not one that has been captured in the microstructure literature.

We also obtain an analytic solution under special distributional assump-
tions. Substituting specific numerical values into the analytic solution, we
provide further intuition of how the model works and explore properties
of the equilibrium.

Kyle (1985) develops the second major branch of the adverse-selection
literature. GM and Kyle differ primarily in their trading mechanism. GM
is a quote-driven system where market makers post bid and ask prices
before orders are submitted. Kyle’s is an order-driven system where traders
submit orders before prices are determined.® Most real-world trading sys-
tems are a hybrid of these simpler structures. For example, the New York
Stock Exchange operates more like a quote-driven system for low-volume
stocks and more like an order-driven, continuous auction system for high-
volume stocks.

Our model builds on the GM quote-driven framework. For simplicity,
we limit our analysis to a single-period setting in which (1) market makers
set quotes first and then (2) market orders and limit orders arrive simultane-
ously. By contrast, much of the rapidly growing literature on limit orders
has added limit orders to order-driven frameworks. Typically, in these
models, (1) limit orders arrive, then (2) market orders arrive, and then (3)
prices are determined. Comparing the two approaches, the benefit of our
quote-driven approach over an order-driven approach is that it captures
the interaction between limit orders and precommitted bid-ask quotes.
However, the limitation of our approach is that it does not capture the
effect of preexisting limit orders. How restrictive this limitation is depends
in part on the cost of canceling old limit orders and resubmitting new ones.
For example, if it costs nothing to cancel and resubmit limit orders, then

% Chordia and Subrahmanyam (1992) explain trading inside the bid—ask spread. They show
that competitive market makers may follow a mixing strategy that randomly trades a certain
percentage of market orders inside the spread, where the mixing percentage is a function of
the order size.

¢ See Madhavan (1992) for a comparison of these two trading mechanisms.
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a multiperiod limit order model could view all limit orders as being routinely
canceled and resubmitted, with some new orders being resubmitted at the
same price as old ones. Such a multiperiod model would be isomorphic
to a repeated single-period model. However, if the cost (including the
opportunity cost) of canceling and resubmitting is substantial, then our
single-period setting would be restrictive. Other limitations of our model
include: (1) all uninformed orders are completely exogenous, (2) there are
no innovations in public information between the time that limit orders
are submitted and the time they execute (see Brown and Holden (1994)
for an analysis of this issue), (3) the market makers do not get to use limit
orders on the book to extract any information, and (4) the “‘free option”
problem raised by Rock (forthcoming) (see footnote 7) is not addressed.

The limit order literature has grown rapidly in the last few years. The
earliest model was Kyle (1989), which defines a ‘‘schedule of limit orders”
as a linear demand schedule covering all quantities. Rock (forthcoming)
models limit orders as a request for a specific quantity of the security at a
specific price. However, his model restricts submission of limit orders to
uninformed traders only, and both types of orders are limited to unit
quantities.” Angel (1990), Easley and O’Hara (1991). Foucault (1993), and
Harris (1994) model an informed investor’s order placement strategy for
choosing between market and limit orders. But all of these models require
investors to choose one or the other—never both market and limit orders.
Kumar and Seppi (1993) develop a model of both market and limit orders
based on an order-driven trading mechanism. Among other results, they
show that brokerage costs have important influence on the depth and
composition of the limit order book. They prove the existence of an equilib-
rium using a fixed-point theorem. However, they do not provide an analytic
solution. Glosten (1994) develops a model of an “electronic exchange™ in
which a large number of risk-neutral liquidity suppliers submit limit orders.
A single risk-adverse, utility-maximizing trader, who may or may not be
informed, arrives at any point in time. The trader submits a market order
only that is executed against the limit order book. The trader is not permit-
ted to submit a limit order. Glosten analyzes the properties of the electronic
exchange and demonstrates that it provides as much liquidity as possible
in extreme situations. He also shows that the electronic exchange cannot
be undercut by an entering exchange that earns positive expected profits.
Black (1991, 1994) develops a series of conjectures about the likely character
of future trading mechanisms in equilibrium. He conjectures that unin-

" Rock focuses on how the market maker’s inventory problem is affected by uninformed
limit orders. His key result is that uninformed limit orders exacerbate the inventory problem
and thus delay the full adjustment to an inventory shock. By contrast, our model focuses on
the adverse selection problem.

* This paper focuses on stop orders.
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formed traders will use “unpriced limit orders” that specify the number of
shares requested and a level of urgency. Greater urgency implies a higher
average percentage execution rate and greater losses to informed traders
and vice versa. He conjectures that informed traders will predominantly
use market orders, but may occasionally use unpriced limit orders. He
argues that uninformed traders cannot do better using (1) conventional
limit orders with a limit price, (2) specialized exchanges, (3) basket trading,
or (4) sunshine trading.

The plan of the paper is as follows. Section 2 develops the model under
minimal distributional assumptions, characterizes the informed trader’s op-
timal strategy, and then develops an analytic solution under specific distribu-
tional assumptions. Section 3 provides a numerical illustration of the model.
Section 4 concludes. All proofs are in Appendixes A and B.

2. THE MODEL

2.1. General

There are three classes of economic agents: one informed trader, two or
more uninformed traders, and N = 2 identical, competitive market makers.
All agents are assumed to be risk neutral. The model is a single-period,
two-date model with one risky asset. On date 0, first the market makers
quote prices, then the informed and uninformed traders submit their market
and limit orders simultaneously, and finally all orders are executed (or not
executed) according to the protocol of the security exchange. On date 1,
the terminal value is realized and all agents receive this value of the security.
For most of this section, the model is analyzed without distributional as-
sumptions other than the support of the random variables. In Section 2.5,
additional distributional assumptions are invoked in order to obtain an
analytic solution, and in Section 3, numerical values are substituted into
the analytic solution in order to illustrate the model.

The security exchange is assumed to follow a quote-driven protocol.
Specifically, on date 0 each market maker declares a bid—ask quote. The
individual market maker is committed to trade on the opposite side of each
MB at the quoted ask and to trade on the opposite side of each MS at the
quoted bid. In equilibrium, there is a single competitive ask price @ and a
single competitive bid price b, each of which yields zero expected profits
for each market maker.

The informed trader observes the liquidation value of a security v, where
v is a real value from the bounded interval [v,, vy] and u denotes the
unconditional mean E[v]. Then, the informed trader makes a choice of
orders to submit. The informed trader’s choice set is summarized in Panel
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TABLE I

OVERVIEW OF CHOICE VARIABLES AND RANDOM VARIABLES IN THE MODEL

A: The Informed Trader’s Choice Set

Order Choice variable Space of the choice variable
Market buy (MB) MB' = number of MB shares {0,1,2,....,0}
Market sell (MS) MS' = number of MS shares {-0,...,-2,-1.0}
Limit buy (LB) Nig = number of LB shares {0,1,2,..., O}
b' = LB price [ve. vi)
Limat sell (LS) Nis = number of LS shares {-0Q,..., -2, -1,0}
s! = LS price [ve, val

B: Uninformed Traders’ Submissions

Order Random variable Support of the distribution
Market buy (MB) MBV = number of shares {0.1,2,..., 0}
Market sell (MS) MSV = number of shares {-0,....,-2,-1,0}
Limit buy (LB) NP = number of shares {0,1,2,.... 0}
bY = limit buy price [b. u]
Limit sell (LS) N’s = number of shares {-Q..... -2, -1,0}
sY = limit sell price [u, a}

Note. Q is the maximum number of shares that can be bought or sold, v is the lower bound
of v, b is the bid price, u is the unconditional mean of v, @ is the ask price, and vy is the
upper bound of v.

A of Table I. The first column lists the four types of orders that the informed
trader is permitted to submit, a MB, a MS, a LB, and a LS. For each order,
the informed trader chooses the corresponding number of shares to submit,
MB', MS', N}, and Nig. Throughout this paper we follow the following
conventions:

1. buy orders are nonnegative integers from the set {0, 1, 2, ..., Q},
where Q is the upper bound on number of shares that may be bought,

2. sell orders are nonpositive integers from the set {—Q, ..., =2, -1,
0}, and

3. anIsuperscript refers to the informed trader and U superscript refers
to uninformed traders.

For the limit orders, the informed trader chooses the corresponding limit
prices b' and s! from the interval [v., vy]. Limit orders live for one trading
date; unless executed on that date, they expire.

Simultaneously, the uninformed traders trade for liquidity or other rea-
sons that are not modeled. The uninformed traders’ submissions are summa-
rized in Panel B of Table 1. Collectively, they submit the same types of
orders as the informed trader. For each order, a random variable determines
the corresponding number of shares they submit, MBY, MSY,
N5, and N[s. For the limit orders, one random variable determines the
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Market Maker Selling at g
Market Buy (MB) Informed LS at 5"
Uninformed LS at sV
MSat p
The MS Side
Market Maker Buying at b
Market Sell (MS) Informed LB at b’
Uninformed LB at b¥
MBat p

FiG. 1. Order execution on the two sides of the market. The MB side. The four ways a
MB can execute and the corresponding transaction price for each way. The MS side. The
four ways a MS can execute and the corresponding transaction price for each. a is the ask
price, s' is the informed limit sell price, sV is the uninformed limit sell price, u is the uncondi-
tional mean of the risky asset, b is the bid price, b' is the informed limit buy price, and bV
is the uninformed limit buy price.

limit buy price bV from the interval [b, n] and another random variable
determines the limit sell price s¥ from the interval [u, a].® All of the
underlying random variables, v, MBY, MSY, Nz, N\, bY, and sY are
assumed independent of each other.

2.2. Order Execution

Many possible combinations of orders may arrive simultaneously at the
security exchange. There are two sides of the security exchange for execut-
ing orders. We call one side the market buy side (MB side) and the other
the market sell side (MS side). Figure 1 illustrates these two sides.

Figure 1 shows that on the MB side, a MB order can execute in four
ways: (1) against a market maker who is selling, (2) against an informed
LS, (3) against an uninformed LS, and (4) against a MS. Similarly, Fig. 1
shows that on the MS side there are four analogous ways for a MS order
to execute. In other words, a MB can trade with four different instruments
of selling and a MS can trade with four different instruments of buying.
Hence, the two sides are disconnected from each other, except in the special

“ Note that a limit sell price above the ask a does not make sense in our setting since it
would not be executed. Similarly, a limit buy price below the bid b would not be executed.
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case when a MB and a MS trade with each other. For this special case, we
adopt the convention that MB and MS cross at the unconditional mean
wu. Since the unconditional mean is an exogenous value, the system of
simultaneous equations that determine endogeneous prices and trading
strategies on the MB side and the system of simultaneous equations on the
MS side are effectively disconnected from each other. We exploit this
disconnection by sorting the informed trader’s objective function into two
parallel profit functions, one on the MB side and the other on the MS side.
Similarly, we sort the market maker’s objective function into one on the
MB side and the other on the MS side.'”

We wish to emphasize that we are not restricting the informed trader to
trading on only one side. Indeed, we show for some realizations that it is
optimal for the informed trader to submit orders on both the MB side and
the MS side simultaneously. In other words, the total equilibrium is the
sum of the two parts.

The protocol of a security exchange specifies the rules for executing any
combination of orders that arrive at the exchange. In our model, the proto-
col is based on two rules. The first is for executing a market order and is
called ““price priority.” First, the market buy (MB) orders are matched
with the lowest price that can be obtained from any of the four selling
instruments. If another MS exists, the lowest price is u. If no MS exists,
but a limit sell (LS) exists, then the lowest price is either s' or sV. If neither
an MS nor a LS exists, then the lowest price is the competitive ask a. Next,
any remaining shares from the MB orders move up the schedule of the
limit order book and are matched with the next lowest price that can be
obtained from the selling instruments, and so on.'! The protocol works in
an analogous manner on the MS side.

The second rule of the protocol specifies that market orders will obtain
pro rata rationing of limit order prices. To illustrate this, Table II gives an
example in which the informed trader has submitted a MB for 8 shares
and a LS for 7 shares at $49. Uninformed traders have submitted a MB
for 4 shares and a LS for 9 shares at $48.

The total shares requested by the informed MB and the uninformed MB
is 12 shares. Initially both MBs execute against the uninformed LS, at $48
rather than $49. But since the uninformed LS is only for 9 shares, they are
pro rata rationed to the LBs as follows:

* (£) % 9 shares = 6 shares go to the informed MB at $48 and
® (4/12) X 9 shares = 3 shares go to the uninformed MB at $48.

'® The MB side should not be confused with MB orders. The MB side includes both MB
orders and LS orders (which might execute with each other). Similarly, the MS side includes
both MS orders and LB orders.

' This clearing procedure closely matches the actual procedure of the NYSE. See NYSE
Constitution and Rules (1992), Rule 72.
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TABLE 11
EXAMPLE OF PRO RATA RATIONING

Better price:
Uninformed LS
for 9 shares
at $48

Worse price:

Informed LS

for 7 shares
at $49

Total shares
and weighted
average price

Informed MB for §
shares

Uninformed MB for 4
shares

Total

6 shares at $48

3 shares at $48

9 shares at $48

2 shares at $49

1 share at $49

3 shares at $49

8 shares at $48.25

4 shares at $48.25

12 shares at $48.25

and 4 LS shares
unexecuted

and 4 LS shares
unexecuted

Note. In this example. the informed trader has submitted a MB for 8 shares and a LS for
7 shares at $49. Uninformed traders have submitied a MB for 4 shares and a LS for 9 shares
at $48.

This satisfies nine of the shares requested by the MBs. The remaining three
shares are obtained by moving up the limit order book to the informed LS
at $49. Since the informed LS is for 7 shares, the remaining 3 shares
requested by the MBs are crossed with the informed LS at $49. In summary,
the informed MB for 8 shares received a weighted average price of $48.25
and the uninformed MB for 4 shares received the same weighted average
price of $48.25.

2.3. The Informed Trader’s Problem

Recall the basic distinction between order types: (1) a market order
trades a certain number of shares at an uncertain price, and (2) a limit
order trades an uncertain number of shares at a certain price. For an MB
submitted by the informed trader, let MB' be the certain number of shares
and pyp be the uncertain price. Similarly, for a market sell by the informed,
let MS" be the certain number of shares and pys be the uncertain price.
For a limit buy by the informed, let LB" be the uncertain number of shares
that actually get executed and let b' be the certain price. Similarly, for a
limit sell by the informed, let LS"' be the uncertain number of shares
that actually get executed and let s' be the certain price. The probability
distribution for the random number of shares executed under an informed
limit buy is a function of the number of shares requested (N! ;) and the
limit buy price, LB' = LBY(N| g, b"). Similarly, the probability distribution
for the random number of shares executed under an informed limit sell is
a function of the number of shares requested (N| ) and the limit sell price,
LS = LS'(Nig, sh.
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The informed trader’s objective function sorts into two pieces. Let Jyup
be the conditional expected profit function given the terminal value v for
the MB side and let Jyg be the same function for the MS side. The informed
trader maximizes Jyg by choosing the optimal MB and LS and maximizes
Jums by choosing the optimal MS and LB,

Max Jme + ]MS ~
= Max E[MB'(v — pup) + LS'(v — s1)|v] (1
+ E[MS'(v — pus) + LB'(v = BY)|v].

Since the informed trader knows the terminal value v, the expectations
operator can be passed through to obtain

Max MBY(v — E[pus]) + E[LS}(v — s") 5
+ MS'(v — E[pws]) + E[LBY(v — bY). 2)

This form of the informed trader’s objective function highlights the fact
that the market order decisions rest on their expected prices E[fug] and
E{pPwus] and that the limit order decisions rest on their expected quantities
E[LB" and E[LS§"]."?

We now proceed to characterize the informed trader’s optimal choices,
without distributional assumptions other than the support of the random
variables. The optimal limit sell price is determined by the First Order
Condition (F.0.C.), dJys/0s' = 0, and the optimal limit buy price is deter-
mined by the F.O.C., 8Jys/0b' = 0. The following lemma characterizes the
optimal limit sell price s'* and optimal limit buy price ', where the “*”
superscript designates an optimal value.

Lemma 1. Optimal limit prices meet the following conditions:
s < a.
s> v,

= M.

> b.

bl" < v,

b =< pu.

AR A
Sy
=

Essentially, Lemma 1 rules out the ranges of limit buy prices and limit sell
prices that would yield nonpositive expected profits.

2 For convenience, we suppress the notation for the conditioning on v.
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The expected price of a market buy, E[pysg],!” is based on the multiple
ways for a market buy to execute. Figure 1 illustrates four ways. One of
these is against an uninformed limit sell. This way can be split into two
special cases: (1) when sV < 5" or (2) when sV = s'. In total, there are five
ways for a market buy to execute and each way has its corresponding price.
A market buy can trade: (1) with the dealer at the competitive ask a, (2)
with the informed trader’s limit sell at s*, (3) with the uninformed trader’s
limit sell at a random price s that is lower than the informed trader’s price
(sY < s'), (4) with the uninformed trader’s limit sell at a random price sV
that is weakly higher than the informed trader’s price (sV = s'),'* and (5)
with a market sell at u. Let E[sY|sY < s'] denote the expected value of
sY < s'and let E[sV|sY = s'| denote the expected value of sV = s'. Then,
the expected price of a market buy must be a weighted combination of the
corresponding five expected prices

E[pump] = ma + ms' + mE[sV{sY <51 + mE[sY|sY = s + 7su,
P

where 7y, ..., ms are the probabilities of each of the five events. Similarly,
the expected price of a market sell can be written as a weighted combination
of five analogous events. The following lemma identifies a particular interval
that the expected price of a MB (or MS) must lie within. It is based upon
the fact that the expected price is a weighted average of five prices, each
of which lies in the same interval, and there is a nonzero weight on both end-
points.

LEMMA 2.

1. The expected price of a market buy E|pug] € (u, a) and
2. the expected price of a market sell E[pys] € (b, w).

Whenever a MB trades below the ask price, the difference is commonly
called price improvement.'> Any source of expected price improvement will
lead to an expected price that is inside the spread.'® Our model captures

3 Clearly, E[pus] is not defined for MB' = 0, and E[pys] is not defined for MS' = 0. The
discussion following is based on nonzero market orders.

4 This event happens when the number of shares demanded by MB orders is greater than
the number of shares requested in the informed trader’s LS order, and thus some residual
number of shares are traded against the uninformed LS order even though it is a worse price.

15 Analogously, whenever an MS trades above the bid price, the difference is price im-
provement.

' Lee (1992) finds empirically that when the bid-ask quote is $1/4 or more, the NYSE
delivers price improvement on more than 61% of all trades and Cincinnati delivers price
improvement on more than 78% of all trades. Peterson and Fialkowski (1992) find in their
sample that 50% of trades on all exchanges receive price improvement.
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two sources of expected price improvement. First, a MB can cross with a
MS at w, which is inside the spread. Secondly, a MB can cross with a
LS at a limit sell price which is inside the spread.!” The expected price
improvement available in our framework brings into play the spread, as
shown in the proposition below.

ProposiTioN 1. Market orders submitted inside the spread.

1. There exist values of v < a such that it is optimal to submit a market
buy (MB' > 0).

2. There exist values of v > b such that it is optimal to submit a market
sell (MS' < 0).

Intuitively, it is optimal to submit a positive MB any time that v is greater
than the expected price of a MB (E[pug]). From Lemma 2, we know that
the expected price of a MB is less than the ask price a, due to the expected
price improvement. Thus when @ > v > E[pyg], it is optimal to submit a
positive MB. This result stands in contrast to the GM framework with
market orders only. In GM, there is no opportunity for price improvement
and thus informed trading never takes place inside the spread.

The following lemma characterizes conditions under which each of the
four order types can be ruled out.

LeEmMA 3. The following quantity choices are optimal:

1. Whenv>a, N=0.

2. Whenv <b, Nig=0.
3. Whenv > pu, MS' = 0.
4. When v < u, MB' = 0.

Lemma 3 provides the first sketch of the informed trader’s overall strategy
and is illustrated in Fig. 2. In the figure, the range of possible terminal
values [v,, vy] is subdivided into four subintervals: () v=56, Q) u =v >
b, (3) a > v > u, and (4) v = a. The first subinterval is at or below the
bid and here the informed trader sells shares via LS and MS, but does not
buy. Similarly, the fourth subinterval is at or above the ask and here the
informed trader buys shares via LB and MB, but does not sell. The most
interesting cases are the second and third subintervals when v is inside the

17 McInish and Wood (1992) document **hidden limit orders’ on the NYSE, which they
define as a limit order with a limit price that is inside the spread, and the quote is not updated
to reflect the better price offered by the limit order. When a hidden limit order executes, it
is a source of price improvement relative to the nonupdated quotes. Using an aggressive 10
second rule, McInish and Wood classify about 50% of the limit orders in the TORQ database
(obtained from the New York Stock Exchange) as hidden.
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Terminal Vajue v
v, b n a v
L I
MB Side
Market Buy (MB) B e T NP Buy Shares Buy Shares
Limit Sell (LS) Sell Shares Sell Shares Sell Shares | ~memeemeee
MS Side
Market Sell (MS) Sell Shares Sell Shares menmenman P
Limit Buy (LB) |  ecmeene- Buy Shares Buy Shares Buy Shares

Fii. 2. Sketch of the informed trader’s strategy by four subintervals of the terminal value
v. Above the ask, the informed trader strictly buys; below the bid, the informed trader strictly
sells. Inside the spread, the informed traders use a mix of instruments in order to submit buy
and sell orders simultaneously. v; is the lower bound of v, b is the bid price, u is the
unconditional mean of the risky asset, a is the ask price, and vy is the upper bound of v.

bid and ask quotes. In these two subintervals, the informed trader may
wish to submit both a limit buy and a limit sell. We will show shortly that
this is the optimal policy for any value of v in these two subintervals. In
addition, the informed trader may wish to submit a market buy order when
v > u and a market sell order when v < u. We will show shortly that in
some cases it is optimal to submit three orders simultaneously. Specifically,
for some values in the second subinterval, it is optimal to submit:

® a LS on the MB side and
* a MS-LB on the MS side.

For some values in the third subinterval, it is optimal to submit:

e 3 MB-LS on the MB side and
* a LB on the MS side.

When the informed trader submits multiple orders simultaneously, it is
possible for some of the orders to interact. For example, consider what
might happen if a MB and a LS are submitted simultaneously on the MB
side. They might execute with each other. By contrast, it is impossible for
the LB on the MS side to execute with either order on the MB side. To
distinguish these two cases, we will call two orders that may execute with
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each other a “combined” order and an order that may not execute with
others submitted simultaneously an ‘“‘isolated” order. In this example, we
have a combined MB-LS and an isolated LB.

In order to calculate the informed trader’s expected profits, we must
analyze both the combined case and the isolated case. The expected profits
of an isolated LB is simply E[LB!](v — b!). Given any value for b', as long
as (v — b') is positive, it is obviously advantageous to submit a large
N in order to maximize the expected number of shares that will be
executed E[LB"]. Since M|y has no effect on the probability of execution
(just the maximum number of shares that can be bought), it is clearly
optimal to submit the largest request possible Niz = Q. Similarly, the
optimal policy for an isolated LS is N} = —(. This is the optimal policy
for the combined case as well, as specified by the following lemma.

LemMma 4. For combined submissions, we have:

1. For any value v < a, any MB', and any s' € [u, a), the optimal LS
size is Njg = —Q.

2. For any value v > b, any MS', and any b' € [b, u], the optimal LB

size is Nj g = Q.
Lemma 4 says that when an informed trader can earn positive expected
profits on a limit order of any size, then it is optimal to request the maximum
number of shares (in absolute value). Intuitively, this is because there is
no price impact of increasing the number of shares requested.

Now consider a specific example of a combined MB-LS. Suppose that
the informed trader observes a terminal value v = $52 and computes an
optimal limit sell price s'” = $53. Any time the LS executes, it earns $1.
Suppose that when the uninformed LS arrives, half the time the limit sell
price sY = $51 and half the time sV = $54. When an uninformed LS arrives
at $51, the MB crosses with it and makes $1. When an uninformed LS
arrives at $54, the MB crosses with the informed LS at $53, since this is a
better price than $54. The MB loses $1, but this loss is smaller than the
loss that would have happened without the informed LS. Without the
informed LS, the MB would have crossed with an uninformed LS at $54
and lost $2."* Hence, the combined MB-LS is strictly more profitable than
an isolated MB, because the LS reduces MB losses in a few states. The
more shares that the informed LS requests, the bigger the total loss on the
MB that can be avoided.

This leads to one of the most interesting consequences of including both
market and limit orders in the same framework.

¥ If an uninformed limit sell price of $51 is more likely than $54, then the MB component
of the combined MB-LS would yield a positive profit on average even though it loses money
in some bad states. Hence it is still optimal to submit the MB.
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ProrosiTION 2: Combined Market Order and Limit Order Submissions.

1. When v < a, the informed trader’s expected profits are strictly greater
for a combined MB-LS submission than for a MB submission alone.

2. When v > b, the informed trader’s expected profits are strictly greater
for a combined MS-LB submission than for a MS submission alone.

This proposition says the option-like, conditional execution of limit orders
enhances the profitability of market orders by reducing their losses in bad
states. More generally, it suggests that it is optimal to fully exploit the
richer menu of combined strategies that are available when security ex-
changes permit both market and limit orders.

In analyzing the model we focus on monotonic equilibria, which are
defined as equilibria for which the informed trader chooses a monotonic
strategy.!”

DEFINITION: Monotonic strategy. A strategy is monotonic when:

* on the MB side,

e for any ask price a and for any limit sell price s', the informed trader
chooses a weakly larger number of MB shares, MB!, for larger v, and

* for any ask price @ and for any number of MB shares, MB', the
informed trader chooses a weakly smaller limit sell price for larger v; and

* on the MS side,
* analogous conditions to those above.

A monotonic strategy divides up the set of possible terminal values v
into series of subintervals. Each subinterval is based on a pair of optimal
values for the MB quantity and the LS price (MB!, s'). The bound between
two adjacent subintervals can be described by a critical value, where the
informed trader is just indifferent between the profit generated by alterna-
tive MB-LS combinations. Let the critical value v, be the value of v where
the informed trader is indifferent between:

* a combination of MB' = k shares and the corresponding optimal
limit sell price s} , versus

* an alternative combination of MB' = j shares (j > k) and the corre-
sponding optimal limit sell price s, .

The alternative combination is the profit maximizing combination selected
from the set of feasible values of MB! > k. The critical value v, is defined
using the profit functions from Eq. (1) as

' Intuitively, it seems unlikely that a nonmonotonic strategy would be optimal, but we
can’t rule this possibility out.
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Jus(vi, MB' = k,5}") = Max {Jup(v;, MB' = j,5]") forallj>k}.* (3)
Critical values on the MS side are defined in an analogous manner.

2.4. The Market Maker’s Problem

The market maker is responsible for being the trader of last resort for
the market orders. For example, after a MB has crossed with MS and LS
orders, any residual shares would trade with the market maker. Let X be
the total number of shares that all market makers sell at the competitive
ask price on their own account. The market clearing condition for MB
orders is that X = —(residual number of shares requested by MB orders).
A similar market clearing condition holds on the MS side.

The equilibrium ask price a is determined by an equilibrium condition
that each of the risk-neutral, market makers earns zero expected profit on
the MB side. This condition is given by

E [(N’f) v~ a)] —0. @

The bid price is determined by a similar zero expected profit condition on
the MS side. This completes the overview of the model and leads to the
following definition of equilibrium.

DerintTiON: Equilibrium.  Equilibrium prices and quantities are:

1. on the MB side,
* an ask price a,
* a monotonic set of critical values v, for k =0, ..., Q — 1, and
* a limit sell price function s = s"(k, v)
that satisfy the following system of simultaneous equations:

¢ the equilibrium condition for the ask E[(X/N)(v — a)] = 0,
¢ the informed trader’s indifference equation (Eq. 3) for all £, and
¢ the F.O.C. 8Jyg/ds! = 0;

2. on the MS side,

a bid price b,

* a monotonic set of critical values v, for k = —Q, ..., —1, and

* a limit buy price function b' = b(k, v)

®To complete the set of critical values on the MB side, we add the highest and lowest
bounds, v_; = v; and vy = vy.



AN INTEGRATED MODEL OF MARKET AND LIMIT ORDERS 229

that satisfy the analogous system of simultaneous equations for the MS side.

2.5. An Analytic Solution

Under the above systems of simultaneous equations, it is impossible to
determine if a solution exists or is unique. However, in one special case
we can obtain an analytic solution as shown in the following proposition.

ProprosITION 3: Analytic Solution.  Under special distributional assump-
tions (see Appendix A), the unique monotonic equilibrium is given below.

1. On the MB side, the ask price is

a:—d—vd2—4ce

2c

where the coefficients are given by
Q ~

c= ’;) (o — ag- oy + ap-) —2)E[X| MB' = k],
Q o~

d= ;} (o — o 1 )(Br + Bi 1) + (B — B o + -, — 2)E[ X | MB' = k],
Q

€= ;) [(Bi — Bi-1) (B + Bi-D]E[X|MB! = k],

and the monotone set of critical values are v, = aqa + By for k €
{0, ..., O}, where expressions for oy and B are given in Appendix B.

2. On the MS side, analogous equations specify the equilibrium values.

In the following section we substitute specific numerical values into this
analytic solution in order to provide further intuition about how the model
works and to explore the properties of the equilibrium.

3. A NUMERICAL ILLUSTRATION OF THE MODEL
This section provides a numerical example to illustrate the operation of
the model. We assume that

* v has a continuous uniform distribution over [$40.00, $50.00], (thus
u = E[v] = $45.00),
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{—10 with probability = .9,
P NU —

(0 with probability = .1,
.« NV, = {10 with probability = .9,

e sV = $45.50, which is a constant in the interval (u = $45.00, a =
$47.63), and

¢ pY = $44.50, which is a constant in the interval (b = $42.37, u = $45.00).

0  with probability = .1,

The informed trader’s strategy on the MB side is a combined MB-LS.
Holding the LS part fixed, the optimal MB quantity is determined by
calculating a series of critical values v;, where the informed trader is exactly
indifferent between submitting a MB for one particular quantity versus
another. Using Eq. (3), we obtain the following critical values:

® v, = $45.12, which is the indifference point between MB! = 1 share
and MB! = 0 shares;

* v, = $45.15, which is the indifference point between MB' = 2 shares
and MB' = 1 share;

* v, = $45.20, which is the indifference point between MB! = 3 shares
and MB' = 2 shares; etc.

Thus for any value of v € ($45.12, $45.15], the optimal MB is one share,
for any value of v € ($45.15, $45.20], the optimal MB is two shares, etc.
Turning to the LS part of the combined MB-LS, we focus on the optimal
limit sell price s'. The assumption that the uninformed trader’s limit sell
price is constant (s = $45.50) simplifies matters a great deal. If the informed
trader sets s' in the range of values $45.00 = s!' < $45.50, then it will
undercut both the price of the market maker and the price of the uninformed
LS. If the informed trader sets s’ in a second range of values $45.50 < s' <
$47.63, then it will undercut the price of the market maker, but will not
undercut the price of the uninformed LS.?! Within each of the two ranges,
the profit function Jyp is strictly increasing in s'. Intuitively, increasing s'
increases the profit per share when the LS executes without changing the
probability that the LS will execute. Hence, the optimal limit sell price

2 In order to avoid a cumbersome exposition that talks about undercutting the market
maker's price “by an arbitrarily small amount,” we adopt the tie-breaking rule that when the
market maker and informed LS have both set the same price, then the informed LS gets the
entire order flow. For the same reason, we adopt the tie-breaking rule that when the informed
LS and the uninformed LS have both set the same price, then the informed LS gets the entire
order flow.
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Fis. 3. Profit function (J/yp) for two-limit sell prices. The profit function (Jyg) for a
combined MB-LS when s' = $45.50 is downward sloping. The profit function for a combined
MB-LS when s' = $47.63 is upward sloping. They cross at the “switching value” v, = $45.27,
at which point the informed trader switches from s' = $45.50 to s' = $47.63.

within each range is the maximum price in the range (i.e., s' = sV = $45.50
in the first range and s' = a = $47.63 in the second range).

Intuitively, the tradeoff between these two values is that s' = $45.50 will
lead to less profit per share when the informed LS executes, but it will
execute more often since the price is better than the uninformed LS. Alter-
natively, setting s' = $47.63 will lead to more profit per share when the
informed LS executes, but it will execute less often since the price is worse
than the uninformed LS. The optimal choice depends on which one will
yield the higher value of the profit function Jyg for a given realization of
v. This choice is illustrated in Fig. 3 which graphs the informed trader’s
profit function Jyg for combined MB-LS as a function of the terminal
value v. The downward sloping curve is Jyg for s' = $45.50 and the upward
sloping curve is Jyg for s' = $47.63. The two curves cross at v = $45.27,
at which price the informed trader’s strategy switches from s' = $45.50 to
s! = $47.63. Formally, this switching value is the critical value, v,, where
the informed trader is indifferent between a combined MB for four shares
and a LS at s! = $45.50 versus the profit maximizing alternative combination,
which turns out to be a MB for seven shares and a LS at s' = $47.63.

The informed trader’s overall strategy is illustrated in Fig. 4 (which is
an augmented version of Fig. 2). This strategy differs in three regions.
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Fic. 4. The informed trader’s overall strategy by three regions of the terminal value v.
Table at the top shows the optimal orders to submit on the MB side and the MS side for
three regions. Region I is v < $45.27, Region II is $45.27 < v < $47.63, and Region I1I is
v > $47.60 s' and b' are the limit sell price and the limit buy price, respectively. Within
each region, the MB shares are graphed as a function of the terminal value v. The heavy.
step function is the optimal number of MB shares as determined by the critical values
VYo, Vis V2y ... + Vs -.. , Vg, Vo On the x axis. u is the unconditional mean, a is the ask
price, and vy is the upper bound of v.

Region I is v < $45.27, Region 11 is $45.27 < v < $47.63, and Region III
is v > $47.63. The optimal strategy is
¢ in Region I,
¢ a combined MB for zero to four shares and a LS with s' = $45.50 and
e an isolated LB with b' = $44.50;
¢ in Region II,
¢ acombined MB for seven to ten shares and a LS with s' = $47.63 and
¢ an isolated LB with b' = $44.50;
¢ in Region III,
* a MB only for ten shares, no LS, and
* an isolated LB with b' = $44.50.
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Within each region, the MB quantity is graphed as a function of the
terminal value v. The optimal value of MB!' is a step function determined
by the critical values shown on the x-axis. For example, if the terminal
value v € (v,, v3), then the optimal MB' = 3.

Figure 4 also illustrates the main points of Propositions 1 and 2. With
regard to Proposition 1, the step function for the informed trader’s strategy
is positive in Regions [ and II (which are both inside the spread v < a).
Hence we see that the informed trader optimally submits a positive MB
for values of v inside the spread. With regard to Proposition 2, Fig. 4
illustrates that a combined MB-LS (rather than a MB only) is optimal in
Regions I and 1I.

4. CONCLUSION

By adding limit orders to a standard model of market microstructure,
we demonstrate the complex structure of the optimal strategy that results.
The optimal strategy includes

* submitting a market order inside the bid-ask spread,

* a combined MB-LS submission, where the component orders may
cross with each other, and the limit order acts as a safety net for the market
order in the opposite direction, and

¢ different limit sell prices in different regions.

In many respects our model only scratches the surface of the complexities
introduced by limit orders. Future research could probe deeper by generaliz-
ing our model. For example, one extension would be a multiperiod version.
Unexecuted limit orders would be carried over to the next period and the
market maker would make an updated inference about the value of the
security before issuing new bid-ask quotes. A second extension would
allow the market makers to act strategically, as in Rock (forthcoming). A
third extension would endogenize the uninformed orders.

APPENDIX A

Proof of Lemma 1. (1) A limit order with a limit sell price s'" > a
would never be executed. (2) From Eq. (2), it is clear that a limit sell price
s'" < v would yield negative expected profits. (3) Reducing the limit sell
price s' reduces the profit per share conditional on execution s* — v, but
increases the chances of execution by increasing the chance that the in-
formed limit sell price will beat out the uninformed limit sell price, 5! <
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sY. Once s' is reduced down to g, then the informed limit sell price always
beats out the uninformed limit sell price sY € [u, 4], and the informed
trader would be strictly worse off if s! were lowered any further. (4), (5),
and (6) are analogous to (1), (2), and (3). Q.E.D.

Proof of Lemma 2. (1) The expected price of the market buy is a
weighted combination of five prices corresponding to the five events listed.
From the distribution assumptions and from Lemma 1, each of the five
prices is in [u, a] and there is a nonzero weight on both endpoints, hence
the weighted average is in (u, a). (2) is analogous to (1). Q.E.D.

Proof of Proposition 1. From Lemma 2, we know that E[pug] < a, for
any MB = 1, and hence there exist some values of v such that a > v >
E[pwmg)- For these values of v, combined with a limit sell for any number
of limit sell shares N} and any limit sell price s', it is more profitable to
submit a market buy for a positive number of shares than for zero shares
(i.e., MBY(v — E[pPus]) > 0). The proof for the other side is analogous.

Q.E.D.

Proof of Lemma 3. (1) From Lemma 1, it is clear that when v > g,
then v — s'is strictly positive. Hence, a nonzero limit sell order would yield
negative expected profits. (2) is analogous to (1). (3) From Lemma 2, it is
clear that when v > u, then v — E[ ] is strictly positive. Hence, a nonzero
market sell order would yield negative expected profits. (4) is analogous
to (3). Q.E.D.

Proof of Lemma 4. (1) If the informed LS trades against an uninformed
MB, then it generates a positive profit per share and more shares yield
more total profit. If the informed LS trades against the informed MB, then
it reduces the MB loss per share and more shares yield more total loss
reduction. Hence more LS shares are always better. (2) is analogous to (1).

Q.E.D.

Proof of Proposition 2. Both follow immediately from Lemma 4.
Q.E.D.

Assumptions for Proposition 3. We assume that

* v has a continuous uniform distribution over [v,, vy],

- with prob. = 7.,
* N5 = { ¢ ) P =
0  withprob. =1 — 7,
.« NV, = {Q with prob. = 73,
0 withprob. =1 — g,

® sV = h, where h is a constant in the interval (u, a),



AN INTEGRATED MODEL OF MARKET AND LIMIT ORDERS 235

* bV = [ where ! is a constant in the interval (b, &),

* MV is a discrete random variable defined on the integers {—-Q, ..., —1,
0, 1’ .y Q}’
{MU, when MV > 0,
s MBY =
0 otherwise,

MY, when MV <,

. MsY ={
0  otherwise.

MV can be thought of as the net market orders from uninformed traders.”
We do not make a specific distributional assumption about MY.

Proof of Proposition 3. Multiplying by N and conditioning on the num-
ber of shares of the informed trader’s market buy (MB! = k shares, where
k can equal zero) under the optimal strategy, Eq. (4) in Section 2.4 can be
written as

i Pr(MB' = k)E[X|MB' = k|(E[v|MB' = k] — a) = 0, (5)

where Pr(MB' = k) is the probability that MB' = k, E[X|MB' = k] is the
expected number of market maker sells conditional on MB' = k, and
E[v|MB" = k] is the expected value of v conditional on MB' = k.

The assumption that v is uniformly distributed leads to simple expres-
sions. The probability that v is in a specific interval [vi_1, vi] is (vi — vi_1)/
(v — vp) and the expected value of v in that interval is (v + vi_()/2.
Substituting in (5), the market maker’s zero expected profit condition be-
comes

g — Vi~ + vy
E(u_) E[X|MB' = k] (ze__zk__x_a) “o.

Vg — Vv 2
H L

The uniform distribution also simplifies the equation for the kth critical
value v, into a linear function of a. Let this linear function be denoted v, =
aa + By for k € {0, ..., Q7'}, where expressions for oy and B, are given
in Appendix B. Multiplying both sides by 2(vyq — v ), rearranging, and

22 [n effect we have dropped the independence assumption between MBY and M3V, This
is done just as a matter of computer programming convenience in order to reduce the number
of combined outcomes from these two random variables from 11 X 11 = 121 outcomes to
11 + 10 = 21 outcomes. There is no conceptual difficulty in restoring the independence as-
sumption.
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substituting the linear expression for the kth critical value, we obtain a
quadratic equation for a,

o
;)(aka + Bk — o ra — Bi-1)
(aka + Bk + oy_q1a + Bk—l - 261)E[X|MB[ = k] =0.

This leads immediately to the solution given by the quadratic formula.
Q.E.D.

APPENDIX B

This appendix provides additional detail on the analytic solution given
in Proposition 3. The plan of the appendix is to:

¢ provide a more explicit version of the equation for the critical value
Vi = o + By,

* substitute for E[p,] and s} functional forms which are linear in the
ask price a,

® solve for o, and B, which substitute directly into the analytic solu-
tion, and

¢ provide additional details on how to calculate the informed trader’s
expected price of a MB (E[p,]) and the informed trader’s expected number
of shares that will execute under a LS (E[LS"]).

The critical value v, is determined by where the informed trader is indiffer-
ent between trading the combination MB' = k shares and the corresponding
optimal limit sell price s, versus an alternative combination of MB' = j
shares (where j > k) and the corresponding optimal limit sell price s} .
Referring to Eq. (3) in Section 2.3 and substituting Jug(-) from Eq. (2) for
the profit function on the MB side, we obtain

k(v = E[pi]) + E[LS)(vi = 5i) = j(v& — E[p]) + E[LS]I(v = 57,

where j > k is the profit maximizing combination. With all of these critical
values, when a particular terminal value v is in the interval [v,_;, v], then
it is optimal for the informed trader to submit a MB for & shares combined
with a LS at the optimal LS price s}".

Because of the uniform distribution of v under the special distribution
assumptions, the expected price of a market buy can be represented in a
simple linear form, E[p;] = fia + gi. Similarly, given that s¥ = h, then
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sy is either A or a. It simplifies matters a great deal to represent these two
values as linear functions of the ask price a, sk = cia + di. Thus, when

sy =a,thenc, = 1and d, = 0, and when s, = A, then ¢, = 0 and d, =
h. Substituting these linear forms in the equation above, we get

k(vi — Elfa + g]) + E[LS})(vk — [cxa + di))
=j(vi — E[fia + gj]) + E[LS})(vk — [cja + d}]).

Solving for the critical value v;, we obtain
Vi = o + By,
where

k-j+E[LSY - E(LS]

Qy =

and

5 = kg — jg + diE[LS,] — d;E[LS]]
, k—j+ E[LS})— E[LS]]

To complete the set of critical values on the MB side, we add the highest
and lowest bounds, v_; = v and vy = vyy. These critical values imply the
coefficients a_; = 0, B.1 = v, ap = 0, and B, = vy. All of these coefficients
for oy and B, substitute into the analytic solution in Section 2.5 in order
to determine the ask price a.

To compute the formulas above, we need to calculate f;, g, and
E[LS,] (for both S' = h and S' = a), and f,, g;, and E[LS}] (for both §' =
h and S' = a), for all j > k. In order to do this, we make the following defini-
tions:

e NMB! = the net informed MB = MB! — MS§' = the informed MB
less the uninformed MS (i.e., net of the MS that the MB crosses with);

e MBY < Q — NMB! is the “slack” state in which the uninformed MB
is less than the informed LS shares less NMB;

* Fus = the cumulative probability of being in the “‘slack’ state;

* x, = the expected fraction of shares of a MB for k shares that do not
cross with MS shares, in other words, the fraction 1 — x; does cross with
MS shares;

* w, = the fraction of shares of a MB for k shares crossing with a LS



TABLE 111
INFORMED TRADER'S E[LS'] AND E[pmg] BY Two LimiT SELL PRICES UNDER FOUR STATES
A:Fors'=h
Informed trader’s Informed trader’s
State conditions Probability E[LS"|state] E[ pus | state]
NLS =0, MBY = Q — NMB! (1 - m)Fus —(E][MBY|MBY = Q — NMB'| + NMBY) xh + (1= x)u
NY =0, MBY > Q — NMB' (1 — m5)(1 — Fug) -Q xwih + (1 — wia] + (1 — x)u
Ny = -0, MBY = @ — NMB' T sFup —(E{MBV|MBY = Q — NMB'] + NMB") ah+ (1 - xdp
NYs = -Q,MBY > Q — NMB' ms(1 — Fun) -Q xch + (1~ xp
B:Fors' =a
Informed trader’s Informed trader’s
State conditions Probability E[L§7{state] E[pus | state]
NY% =0, MBY = Q0 — NMB' (1 — m5)Fup —(E[MBY:MBY = Q0 — NMB!] + NMB") xa + (1 - x)u
Nps = 0, MBY > O — NMB' (1 = ms)(1 — Fus) -0 xa + (1 = x)u
NYs=—-Q,MBY = (Q — NMB' i sFve 0 xuh+ 1~ x)u
N = -Q,MBY > Q — NMB! ms(1 ~ Fup) —(E{MBY{MB" > Q — NMB"| + NMB' - Q) xfwh + (1 — wya] + (1 — x)u

Note. LS is the realized number of shares traded by a LS, pug is the price of a MB, s' is the limit sell price, 4 1s the uninformed limit sell price
in this example, N{ is the number of shares requested by an uninformed LS, MBY is an uninformed MB, Q is the maximum number of shares
that can be bought or sold, NMB! is the net informed MB, 75 is the probability that an uninformed LS is submitted, Fyg is the probability of the
“slack™ state (MBY = Q — NMB"), x, is the expected fraction of MB for k shares that do not cross with MS, g is the unconditional mean, w, is
the expected fraction of MB for k shares crossing with a LS at the lowest LS price, and a is the ask price.
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at the lowest LS price available, in other words, the fraction 1 — w;, is the
overflow that goes to the next LS or crosses with the market maker.

Table III lists an expression for each of these variables under four differ-
ent states. Panel A does this for an informed LS with s' = A. Panel B
repeats the exercise for an informed LS with s' = a.

To illustrate how to read Table II1, we will explain the first row in Panel
A for state 1. Panel A is for the case in which there is an informed LS with
s' = h requesting N} = —Q shares. Reading across the first row for state
1, the state conditions are that there is no uninformed LS (N} = 0) and
the uninformed MB is in the “‘slack” state (see above). The corresponding
probabilities of these state conditions are 1 — ;5 and Fyg. The informed
trader’s expected number of shares traded via the LS conditional on being
in state 1 is the expected number of shares conditional on being in the
“slack” state (E[MBV|MBY = Q — NMB']) plus the net informed MB
(NMB"). The informed trader’s expected price for a MB conditional on
being in state 1 is the weighted average of the shares that cross with the
informed LS at & and the shares that cross with the uninformed MS at u,
with the weights being x, and 1 — x,, respectively. The rest of the rows
for the other states can be read similarly.

Each of the rows in Panel A in Table III assumes an informed MB of
k shares. In order to calculate the coefficients of E[p,] = fia + g, and
E[LS}], we simply need to calculate the expectation. We do this by (1)
taking a probability-weighted sum over all possible realizations of the net
market orders from the uninformed (MV) within a state and then (2) take
a probability-weighted sum over all four states.

The results are

fe= Z Pr(MY =) (k;— i) [(1 = 7s)(A = Fe)(1 — wieey)]

i=k-1

+ Pr(MV > 0)[(1 — m.)(1 — F)(1 — wy)],
) (ki
2, PrOMY =) (T)
B 7Y [Fes+ (1= Fed(mms + (1 = ms)(1 — wi))]
+ Pr(MY > 0)[F. + (1 ~ F)(ms + (1 — ms)(1 — wi))]
+ (1 - i Pr(MY = i) (%) — Pr(MY > 0)) ™

i=k-

E[LSL] = él Pr(MV = i) (k;: i)
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[Fo.d—(E[MBY|MBY = Q — NMB'] + k + i)}
+ (1 = Fe = Q3] + Pr(M® > 0)
[F{—(E{MBY|MBY = Q - NMB'| + k)} + (1 - F){- 0O},

where
o k+i
Xi = Z Pr(MV =) (—-k—> + Pr(MV > 0),
i=k-1
and
w, =E 9 MBY < Q — NMB!
k k+ MY :

Using Table I11, it is straightforward to write out the analogous expressions
for f. g E[LSL], when s' = a. E[LS} when s' = h and E[LS;] whens' = a.
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