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Abstract

I develop new spread proxies that pick up on three attributes of the low-frequency (daily) data:

(1) price clustering, (2) serial price covariance accounting for midpoint prices on no-trade days, and

(3) the quoted spread that is available on no-trade days. I develop and empirically test two different

approaches: an integrated model and combined models. I test both new and existing low-frequency

spread measures relative to two high-frequency benchmarks (percent effective spread and percent

quoted spread) on three performance dimensions: (1) higher individual firm correlation with the

benchmarks, (2) higher portfolio correlation with the benchmarks, and (3) lower distance relative to

the benchmarks. I find that on all three performance dimensions the new integrated model and the

new combined model do significantly better than existing low-frequency spread proxies.

r 2009 Elsevier B.V. All rights reserved.
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1. Introduction

In a classic and influential paper, Roll (1984) develops a simple proxy for the effective
spread using price data only. Lesmond et al. (1999) and Hasbrouck (2004) develop
additional proxies for the effective spread using low-frequency (daily) data. Amihud (2002)
and Pastor and Stambaugh (2003) develop low-frequency liquidity measures that perhaps
might be viewed as proxies for price impact, more than for the effective spread.
Collectively, these low-frequency spread proxies allow the study of liquidity over relatively
long periods of time and across countries. This is helpful to the asset pricing literature,
see front matter r 2009 Elsevier B.V. All rights reserved.
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because recent studies suggest that liquidity is a priced risk factor. This is also helpful to
recent studies in the market efficiency and corporate finance literatures, which utilize spread
proxies for the cost of trade by stock, by time period, and across countries. Is it possible to
create new low-frequency spread proxies that perform better than the existing low-
frequency spread proxies? In this paper, better performance is primarily evaluated relative
to two high-frequency benchmarks (percent effective spread and percent quoted spread)
and on three dimensions: (1) higher individual firm correlation with the benchmarks, (2)
higher portfolio correlation with the benchmarks, and (3) lower distance (tracking error)
relative to the benchmarks. I find that the answer is ‘‘yes’’ on all three dimensions.

Spread proxies can be constructed from daily data going back more than 80 years in the
United States and for various time spans in countries around the world. For U.S. equity
markets, the Center for Research in Security Prices (CRSP) provides five key daily stock
variables: prices, returns adjusted for splits and dividends, volume, high/ask, and low/bid.1

These five variables are available for all NYSE/AMEX firms from December 31, 1925 to
the present and for all NASDAQ firms from December 14, 1972 to the present.

High-performing low-frequency spread measures would be very helpful to the asset
pricing literature. Chordia et al. (2000), Sadka (2003), Acharya and Pedersen (2005),
Fujimoto (2004), Hasbrouck (2009), and others show that in recent U.S. experience
various liquidity measures vary systematically and are priced; Bekaert et al. (2007) provide
similar evidence for emerging markets where liquidity concerns may be more pronounced.
Spread proxies going back in time and/or across countries are needed to determine whether
or not these asset pricing relationships hold up across time and space.

High-performing low-frequency spread measures would be very helpful to the market
efficiency and corporate finance literatures. De Bondt and Thaler (1985), Jegadeesh and
Titman (1993), Jegadeesh and Titman (2001), Chan et al. (1996), Rouwenhorst (1998), and
many others have found trading strategies that appear to generate significant abnormal
returns. Correctly scaled spread proxies over time and/or across countries are needed to
determine if these trading strategies are truly profitable net of a relatively precise measure
of cost of trading. Similarly, Dennis and Strickland (2003), Kalev et al. (2003), Cao et al.
(2004), Lipson and Mortal (2004a), Schrand and Verrecchia (2004), Lesmond et al. (2005),
and many others examine the impact of corporate finance events on stock liquidity. Helfin
and Shaw (2000), Lipson and Mortal (2004b), Lerner and Schoar (2004), and many others
examine the influence of liquidity on capital structure, security issuance form, and other
corporate finance decisions. Spread proxies over time would expand the potential sample
size of this literature. Spread proxies across countries would greatly extend the potential
diversity of international corporate finance environments that this literature could analyze.

This paper develops new, low-frequency spread measures that pick up on three
attributes of the daily data. One attribute is price clustering—the higher likelihood for
trade prices to be on rounder increments. One can directly observe the frequency of various
price clusters (odd eighths, odd quarters, etc. on a fractional price grid and off-pennies, off-
nickels, off-dimes, etc.2 on a decimal price grid) and use this information to infer the
1High/ask means the highest trade price on a trading day or the closing ask price on a non-trading day.

Similarly, low/bid means the lowest trade price on a trading day or the closing bid price on a non-trading day.
2Off-pennies are penny price points that are not nickels, dimes, or any higher clusters, namely where the last

digit of the price is 1, 2, 3, 4, 6, 7, 8, or 9. Off-nickels are nickel price points that are not dimes, quarters, or any

higher clusters, namely where the last two digits of the price are 05, 15, 35, 45, 55, 65, 85, or 95. And so on.
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effective spread. The second attribute is serial covariance of price changes. I extend the
Roll framework of serial covariance to account for no-trade days in which the reported
price is the closing midpoint. The third attribute is the high/ask and low/bid variables
available in the CRSP stock data. These variables directly supply the quoted spread on
no-trade days.
I develop and empirically test two different approaches to incorporating these three

attributes. First, I develop an integrated model that directly includes these attributes. The
base integrated model, which I call ‘‘Holden,’’ combines two attributes: price clustering and
serial correlation. The expanded integrated model, which I call ‘‘Holden2,’’ combines all
three attributes. Second, I develop combined models, which I call Multi-Factor models,
that are linear combinations of simpler one-attribute or two-attribute models.3 I show
theoretically that Multi-Factor models have the potential to diversify away some
imperfectly-correlated error terms.
Then, I test the new, low-frequency spread measures against the existing low-frequency

spread measures (Hasbrouck Gibbs, LOT Mixed, LOT Y-split, Pastor and Stambaugh,
Roll, and Zeros).4 All proxies are compared to two high-frequency benchmarks: (1)
percent effective spread and (2) percent quoted spread. Both of these benchmarks are
computed from the NYSE’s Trade and Quote (TAQ) dataset for 400 firms from 1993 to
2005. Percent effective spread is a volume-weighted average based on every trade and
corresponding BBO5 quote in the stock-month. Percent quoted spread is a time-weighted
average based on every BBO quote in the stock-month.
I test on three performance dimensions. First, I compute the correlation of each spread

proxy with each benchmark based on individual firms. Second, I create an aggregate
spread measure for each proxy and benchmark based on an equally weighted portfolio
across all 400 firms. Then, I compute the pure time-series correlation of each aggregate
spread proxy with each aggregate benchmark. Third, I compute the average root mean
squared error for each spread proxy compared to each benchmark.
I find that on all three performance dimensions with regard to both benchmarks the new

integrated model Holden2 does significantly better than existing low-frequency spread
proxies. I find that on all three performance dimensions with regard to both benchmarks
the new combined model Multi-Factor2 does significantly better than existing low-
frequency spread proxies, except for one tie. Summarizing six tests (three performance
dimensions X two benchmarks), the combined model Multi-Factor2 does significantly
better than the integrated model Holden2 on four out of six tests.
I also find that these new proxies are robust by size quintiles, price quintiles, and tick size

regime. Consistently, Holden2 is the best integrated model and Multi-Factor2 is the best
combined model. Across all size, price, and tick size regime comparisons, Multi-Factor2 is
the most frequent winner and Holden2 is the second most frequent winner. Finally,
I compare the proxies to low-frequency spread benchmarks and find that new proxies
consistently outperform existing proxies.
3Out of the infinite number of possible versions, I test very simple combinations (50–50% weightings) of the

one-attribute or two-attribute models that perform well on their own. A particularly successful combination,

called ‘‘Multi-Factor2,’’ is defined as 50%*Extended Roll2+50%*No Trade Quoted Spread. The latter two

models are explained later in the text.
4I do not test against the Amihud (2002) measure, since it is really a proxy for price impact, rather than spread.
5BBO means the best bid and offer. It is the highest bid price and lowest ask available for a given stock at a

moment in time.
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An empirical companion paper, Goyenko et al. (2009), performs extensive testing of
monthly and annual liquidity proxies. It tests earlier-developed proxies, Holden, Effective

Tick, and Effective Tick2, and existing proxies from the prior literature. In their monthly
effective spread comparisons, they found that Holden, Effective Tick, and LOT Y-split
significantly outperformed all other spread proxies then in existence. In this paper, later-
developed proxies, Holden2, Multi-Factor1, Multi-Factor2, and other newly developed
proxies are tested for the first time. I find that Holden2 and Multi-Factor2 outperform the
earlier-developed proxies, Holden, Effective Tick, and LOT Y-split, and outperform
existing proxies from the prior literature.

Hasbrouck (2009) tests annual estimates of four liquidity proxies using U.S. data.
Lesmond (2005) tests quarterly estimates of five liquidity proxies using data from 31
emerging countries. The vast majority of asset pricing, market efficiency, or corporate
finance literature that examines the role of liquidity is based on monthly (or finer) data.
Goyenko et al. (2009) and this paper contribute to our knowledge of potential spread
proxies by testing monthly estimates.

The paper is organized as follows. Section 2 develops the integrated Holden model.
Section 3 develops both single-attribute models and combined multi-factor models and
shows that multi-factor models can diversify away some imperfectly correlated
measurement error. Section 4 describes the data and empirically tests both new and
existing low-frequency spread measures on three performance dimensions. Section 5
concludes. Three appendices contain technical details.

2. The integrated approach

2.1. Setup of the Holden model

I begin by develop an integrated model that directly incorporates multiple attributes of
the daily data. Called the Holden model, it is constructed on top of the general
microstructure framework of Huang and Stoll (1997) and uses their notation as much as
possible. Huang and Stoll allow the spread to be generated by all three traditional
microstructure components (adverse selection, inventory risk, and order processing costs).
Their model includes as special cases the covariance spread models (Roll, 1984; Stoll, 1989;
George et al., 1991) and the trade indicator spread models (Glosten and Harris, 1988;
Madhavan et al., 1997).

I modify the Huang and Stoll model in two ways. First, I allow the effective spread St to
change from day to day. This modification follows the precedent of Madhavan et al.
(1997), who model and estimate a trade indicator spread model in which the effective
spread and its components change from hour to hour, and it implements one of the Huang
and Stoll (1997) suggestions for future research. Second, I eliminate their parameter for the
inventory risk component (their b). Inventory risk is unobservable in daily data and so I
allow the inventory risk component to contribute to an error term.

Theoretical reasons why the spread might change from day-to-day include: (1)
anticipated information events (e.g., earnings announcements, dividend announcements,
etc.) which change the ex ante amount of adverse selection (Lee et al., 1993), (2) changes in
the mix of patient versus impatient traders causing variation in the aggressiveness of
undercutting the existing spread (Foucault et al., 2005), (3) stochastic volatility, which
causes time-variation in the inventory cost component and time-variation in the noise/
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signal ratio for privately informed traders, which changes the ex ante amount of adverse
selection (Harris, 2003, p. 313). Empirical evidence that observed spreads (and spread
components) in fact do vary, even on an hour-by-hour basis, include Chan et al. (1995),
Madhavan et al. (1997), Chung et al. (2003), and Chung and Zhao (2003).
Let Vt be the unobservable fundamental value of the stock at the end of day t. It is

assumed to evolve as follows:

Vt ¼ V t�1 þ
1
2
aSt�1Qt�1 þ �t (1)

where a is the percentage of the half-spread attributable to adverse selection, Qt�1 is a buy/
sell/no-trade indicator on day t� 1, and �t is a serially uncorrelated public information
shock on day t.
Let m=2 be the probability of a closing trade at the ask, m=2 be the probability of closing

trade at the bid, and 1� m be the probability of a no-trade day where the reported price is
the closing midpoint. Then the buy/sell/no-trade indicator Qt is given by6

Qt �

þ1 Closing trade is a buy ðprob ¼ m=2Þ

0 No-trade day; reported price is the closing midpoint ðprob ¼ 1� mÞ

�1 Closing trade is a sell ðprob ¼ m=2Þ:

8><
>:

(2)

Let Mt be the unobserved bid–ask midpoint at the end of day t. It is determined by the
fundamental value of the stock plus inventory effects as given by

Mt ¼ V t þ ot, (3)

where ot is cumulative inventory effect of all prior trades.
Taking the first difference of Eq. (3) and combining it with Eq. (1) yields the daily

change in midpoint

DMt ¼
1
2
aSt�1Qt�1 þ �t þ Dot, (4)

where D is the change operator.
Let Pt be the observed trade price at the end of day t. It is determined by

Pt ¼Mt þ
1
2
StQt þ ZtðStÞ, (5)

where the error term ZtðStÞ accounts for rounding the trade price to the same discrete price
cluster as the spread St. For example, when St ¼

1
4
, the price is rounded to the nearest $1

4

increment (e.g., $1
4
; $1

2
; $3

4
; whole dollar). Then E½ZtðStÞ� ¼ 0, because rounding is equally

likely to be up or down.
Combining Eqs. (4) and (5) yields the key price change process

DPt ¼
1
2
StQt � ð1� aÞ1

2
St�1Qt�1 þ et, (6)

where by definition et � �t þ DZt þ Dot. For simplicity, et is assumed to be normally
distributed with a mean ē and a standard deviation se. Eq. (6) is the same as Haung and
Stoll’s equation (5), except that spreads change from day-to-day and the inventory risk
component has been moved to the error term.
6In Huang and Stoll (1997), Qt ¼ 0 means that a trade happens at the midpoint, rather than a no-trade day

where the reported price is the closing midpoint. When limited to daily data, the former is not observable, whereas

the later is observable when the daily volume variable is zero.
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Define Ht as the half-spread on date t, given by

Ht �
1
2
StQt. (7)

Substitute Eq. (7) into Eq. (6) and solve for the error term implied by the price change and
the half-spreads

et ¼ DPt � ðHt � ð1� aÞHt�1Þ. (8)

2.2. Price clustering

An interesting attribute of the daily data is price clustering. Price clustering is defined by
there being a higher likelihood of trade prices on rounder increments. On a fractional price
grid, whole dollars are rounder than half dollars, which are rounder than quarter dollars,
which are rounder that eighths of a dollar. On a decimal price grid, whole dollars are
rounder than quarters, which are rounder than dimes, which are rounder than nickels,
which are rounder than pennies.

Harris (1991) documents that price clustering is remarkably persistent over time and
across stocks. He finds extensive price clustering in CRSP daily closing prices during
1963–1987. He even finds significant price clustering in NYSE closing prices from 1854,
which is the earliest date with typeset price records. Harris offers the theoretical
explanation that price clustering reduces the negotiation costs between two potential
traders by avoiding frivolous price increments that waste time and by reducing the amount
of information that needs be exchanged.

The intuition for incorporating price clustering in the model comes from Christie and
Schultz (1994), who emphasize the connection between observed price clusters and the
spread. For example, if trade prices are exclusively on even eighths increments
ð$14; $

1
2
; $3

4
; $1Þ, then the bid–ask spread must be $1

4
(or larger). Whereas, if trade prices

are half of the time on odd eighths increments ð$18; $
3
8; $

5
8; $

7
8Þ, then the likely bid–ask spread

is $1
8
. In their application, the much greater avoidance of odd eighth trade prices in

NASDAQ stocks, compared to a matched sample of NYSE stocks, provided evidence of
implicit collusion by NASDAQ dealers to maintain abnormally large spreads.

In my application, the frequency with which closing prices occur in clusters of special

prices (e.g., odd 1
8
s; odd 1

4
s;odd 1

2
s; and whole dollars) can be used to infer the effective

spread. There are similar clusters of special prices on a decimal price grid (e.g., off pennies,
off nickels, off dimes, off quarters, and whole dollars) that can be used to infer the effective
spread in that case. This section develops the Holden model for any fractional price grid,
where it is simpler and easier to see the intuition. Appendix A provides the modifications
required to accommodate any decimal or fractional price grid.

Price clustering is included by assuming that trading is conducted in two steps. First,
traders decide (explicitly or implicitly) what price cluster to use on a particular day, so as to
minimize negotiation costs (Harris, 1991). On a fractional price grid, they choose whether
to use eighths, quarters, halves, or wholes. On a decimal price grid, they choose whether to
use pennies, nickels, dimes, quarters, or dollars. Second, the traders negotiate a particular
price from the chosen price cluster.

Following the price cluster/spread connection (Christie and Schultz), I assume that the
effective spread on a particular day equals the increment of the price cluster on that
particular day. In other words, the choice of one is equivalent to the choice of the other.
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I model the effective spread on a particular day St as a random drawn from a set
of possible effective spreads sj ; j ¼ 1; 2; . . . ; J with corresponding probabilities
gj ; j ¼ 1; 2; . . . ; J. I follow the convention that the possible effective spreads s1; s2; . . . ; sJ

are ordered from smallest to largest. For example on a $18 price grid, St is modeled as
having a probability g1 of s1 ¼ $18 spread, g2 of s2 ¼ $14 spread, g3 of s3 ¼ $12 spread, and g4
of s4 ¼ $1 spread.7

Further I assume that the closing price is uniformly distributed on the possible price
increments for a given effective spread size. For example on date t, if St ¼ s1 ¼ $18, then the
closing trade price is uniformly distributed on the eight possible price increments
ð$1

8
; $1

4
; $3

8
; . . . ; $1Þ. On date tþ 1, if Stþ1 ¼ s2 ¼ $14, then the closing trade price is uniformly

distributed on the four rounder price increments ð$1
4
; $1

2
; $3

4
; $1Þ. And so on.

Let Ct be the observable price/midpoint cluster on day t. Clusters Ct ¼ 1; 2; . . . ; J are the
clusters of special prices that correspond to possible effective spreads s1; s2; . . . ; sJ . Clusters
Ct ¼ J þ 1; J þ 2; . . . ; 2J are the clusters of special midpoints that correspond to possible
effective spreads s1; s2; . . . ; sJ .
Fig. 1 illustrates this set-up on a $1

8
price grid. The first part of the tree is the effective

spread nodes St. There are four possible nodes: s1 ¼ $18 spread, s2 ¼ $14 spread,
s3 ¼ $12 spread, and s4 ¼ $1 spread that happen with probabilities g1; g2; g3; and g4,
respectively. From any of these nodes, the next part of the tree is the buy/sell/midpoint
indicator Qt. It can take on values þ1 ðBuyÞ, �1 ðSellÞ, and 0 ðMidpointÞ with probabilities
m=2, m=2, and 1� m, respectively. From any of these second-level nodes, the next part of
the tree is the observable price/midpoint clusters Ct. Consider the first, second-level node
representing St ¼ s1 ¼ $18 spread and Qt ¼ þ1 ðBuyÞ. From this node, there are four
feasible clusters: Ct ¼ 1 Odd $1

8
prices, Ct ¼ 2 Odd $1

4
prices, Ct ¼ 3 Odd $1

2
prices, and

Ct ¼ 4 Whole dollar prices. Given the assumed uniform distribution, the probabilities of
these four clusters are 1

2
, 1
4
, 1
8
, and 1

8
, respectively. Consider the third, second-level node

representing St ¼ s1 ¼ $18 spread and Qt ¼ 0 ðMidpointÞ. From this node, there is only one
feasible cluster: Ct ¼ 5 Odd $ 1

16 midpoints. The rest of the setup tree is analogous.

2.3. The likelihood function

The ultimate goal is to estimate a spread proxy. One version of the model, Holden, is the
weighted-average percent effective spread computed using the estimated spread
probabilities ĝj as follows:

Holden ¼

PJ
j¼1ĝjsj

P̄
, (9)

where P̄ is the average trade price over the time period of aggregation. Naturally, the
estimated spread probabilities must sum to one

XJ

j¼1

ĝj ¼ 1. (10)
7A $3
8
spread (or a $5

8
spread, etc.) results in using all eight possible price increments ð$1

8
; $1

4
; $3

8
; . . . ; $1Þ uniformly.

This cannot be empirically distinguished from a $1
8
spread, which also results in using all eight possible price

increments uniformly. Therefore, I have chosen to model only those possible effective spreads that can be

empirically distinguished from each other.
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An interesting attribute of the CRSP stock database comes from two variables: high/ask
and low/bid. On trading days, these variables report the high and low trade prices for the
day. On no-trade days, these variables report the closing ask and bid. Thus on every no-
trade day, the CRSP stock database provides the quoted spread QSt � At � Bt, where At is
the closing ask price on day t and Bt is the closing bid price on day t.
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A second version of the model, Holden2, utilizes the quoted spread from any no-trade
days that exist. Specifically, this version uses the weighted-average effective spread on
trading days and the average quoted spread on no-trade days as follows:

Holden2 ¼

m
PJ

j¼1ĝjsj þ
ð1� mÞ

1

NTD

PNTD
t¼1 QSt When NTD40;

0 When NTD ¼ 0

8<
:

P̄
, (11)

where NTD is the number of no-trade days in the estimation time interval. Thus, Holden2
integrates all three attributes: price clustering, serial covariance accounting for no-trade
midpoints, and the no-trade quoted spread.
On three successive trading days, we observe a price triplet ðPt;Ptþ1;Ptþ2Þ, which

uniquely corresponds to a price cluster triplet ðCt;Ctþ1;Ctþ2Þ. Define H as the set of all
half-spread triplets ðHt;Htþ1;Htþ2Þ that are feasible given the observed price cluster
triplet.8 Using three prices at a time allows the serial covariance of the price changes to be
picked up, but avoids the combinatoric explosion of feasible half-spread combinations that
would result if all observations were used at the same time.
The parameters to be estimated are: (1) the probability of a trading day m, (2) all-but-

the-highest of the spread probabilities ĝ1; ĝ2; . . . ; ĝJ�1, (3) the mean of the error variable ē,
(4) the standard deviation of the error variable se, and (5) the percentage of the spread due
to adverse selection a. For a given a set of parameter values ðm; ĝ1; ĝ2; . . . ; ĝJ�1; ē; se; aÞ, the
likelihood of the price triplet is

PrðPt;Ptþ1;Ptþ2jm; ĝ1; ĝ2 ; . . . ; ĝJ�1; ē; se; aÞ

¼
X

ðHt ;Htþ1;Htþ2Þ2H

PrðCtÞ � PrðCtþ1Þ � PrðCtþ2Þ � PrðHtjCtÞ � PrðHtþ1jCtþ1Þ � PrðHtþ2jCtþ2Þ

�nðPtþ1 �Htþ1 � ðPt � ð1� aÞHtÞÞ � nðPtþ2 �Htþ2 � ðPtþ1 � ð1� aÞHtþ1ÞÞ

( )
;

(12)

where nð Þ is the normal density with a mean of ē and a standard deviation of se. The price
cluster probabilities PrðCtÞ and the half-spread conditional probabilities PrðHtjCtÞ are
given in Appendix B.
Taking the log of the likelihood of a given price triplet, the overall likelihood function

becomes the sum of the log likelihoods of all price triplets in the time period of aggregation

XT�2
t¼1

LnðPrðPt;Ptþ1;Ptþ2jm; ĝ1; ĝ2; . . . ; ĝJ�1; ē;se; aÞÞ, (13)

where T is the number of days in the time period of aggregation. The likelihood function is
estimated using overlapping three-day windows to maximize the amount of information
extracted.
The likelihood function is maximized subject to constraints using a nonlinear, numerical

optimizer, which continues to iterate until five consecutive iterations lead to no further
increase in the objective function out to eight-digit accuracy and all constraints are meet
8For example, suppose that the price Pt ¼ $25 1
8
is an odd eighth that corresponds to price cluster Ct ¼ 1. For

this price cluster there is only feasible spread St ¼ $18. Thus, there are only two feasible values of the signed half-

spreads Ht 2 $ 1
16
;�$ 1

16

� �
. Similarly, Ptþ1 and Ptþ2 imply the feasible values of the signed half-spreads Htþ1 and

Htþ2. Taking all combinations of the feasible values on each day, yields the set of feasible half-spread triplets.
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with eight-digit precision. The constraints are that m; ĝ1; ĝ2; . . . ; ĝJ ; se; a are greater than or
equal to zero and the constraints that m; ĝ1; ĝ2; . . . ; ĝJ ; a are less than or equal to one. The
constraints gJ � 0 and gJ � 1 can be expressed as a function of parameters to be estimated

as 1�
PJ�1

j¼1 ĝj � 0 and 1�
PJ�1

j¼1 ĝj � 1.

3. The combined approach

This section develops pure single-attribute models based on: (1) price clustering, (2) serial
covariance accounting for no-trade midpoints, and (3) no-trade quoted spread. Then it develops
combined models that are linear combinations of the simpler models and shows that these
combined models have the potential to diversify away some imperfectly correlated error terms.

3.1. A pure price clustering model

The first step is to collect the empirical frequency of each price cluster. Let Nj be the
observed number of special trade prices corresponding to the jth spread ðj ¼ 1; 2; . . . ; JÞ
from positive-trade days. For example on a $1

8
price grid, N1 through N4 are the observed

number of odd 1
8
prices, the number of odd 1

4
prices, the number of odd 1

2
prices, and the

number of whole dollar prices, respectively.
Let NJþj be the observed number of no-trade midpoints corresponding to the jth spread
ðj ¼ 1; 2; . . . ; JÞ from no-trade days. On a $1

8
price grid, N5 through N8 are the number of

odd 1
16
midpoints, the number of odd 1

8
midpoints, the number of odd 1

4
midpoints, and the

number of odd 1
2
midpoints, respectively. Thus, the complete frequency distribution spans

2J events, with N1 through NJ representing special trade prices and NJþ1 through
N2J representing no-trade midpoints.

Let Fj and FJþj be the observed probabilities of special trade prices and no-trade
midpoints, respectively, corresponding to the jth spread ðj ¼ 1; 2; . . . ; JÞ. These empirical
probabilities are easily computed as

Fj ¼
NjP2J
j¼1Nj

for j ¼ 1; 2; . . . ; 2J. (14)

Again, the complete set of probabilities includes F1 through FJ representing special trade
prices and F Jþ1 through F 2J representing no-trade midpoints.

To get the intuition of a price clustering model, consider what happens when the spread
is $1

8
. When there is a trade, half of the time the price is an odd 1

8
and half of the time it is an

even 1
8. When there is no trade, the midpoint is strictly an odd 1

16. Intuitively, to compute
the probability of a $1

8
spread, we need to double the probability of trade odd 1

8
prices (in

order to account for trade even 1
8
prices) and add the probability of no-trade odd 1

16

midpoints.9
9Trade prices on odd 1
8

are used to infer the probability of a $1
8
spread, because they could only have been

generated by a $18 spread under the assumptions of the model. Trade prices on even 1
8 are not used to infer the

probability of a $1
8
spread, because they could have been generated by a $1

4
spread or higher. The probability of the

no-trade odd 1
16
midpoints is not doubled, because there is a one-to-one mapping between odd 1

16
midpoints and the

$1
8
spread. Note that a $1

4
spread generates odd 1

8
midpoints, a $1

2
spread generates odd 1

4
midpoints, and a $1 spread

generates odd 1
2
midpoints. Thus, on a fractional price grid there is no overlap between the midpoints generated by

any of the spreads.
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Let Uj be the unconstrained probability of the jth spread ðj ¼ 1; 2; . . . ; JÞ. Following the
intuition above, the unconstrained probability10 of the effective spread is

Uj ¼

2Fj þ F Jþj ; j ¼ 1;

2Fj � F j�1 þ F Jþj ; j ¼ 2; 3; . . . ; J � 1

Fj � F j�1 þ F Jþj ; j ¼ J :

8><
>: , (15)

Possible effective spreads larger than the smallest face the problem of overlapping price
increments. For example, even 1

8
prices can be generated by both a $1

8
spread and a $1

4

spread. Intuitively, to compute the probability of a $1
4
spread, we need to do the same thing

as the smallest, but also subtract off the probability of those even1
8
prices that were

generated by a $1
8
spread. The Jth spread is also a little different, because there is no larger

spread above it. This implies that there are no price increments (no even $1 increments)
that are not used because they might have been generated by some larger spread. Hence, FJ

the probability of the Jth spread is not doubled.
A price clustering model assumes a higher frequency on rounder increments and in large

samples this will undoubtedly occur. But in small samples it is possible that reverse price
clustering may be realized (i.e., a lower frequency on rounder increments). Reverse price
clustering unintentionally causes the unconstrained probability of one or more effective
spread sizes to go above 1 or below 0. Thus, constraints are added to generate proper
probabilities. Let ĝj be the constrained probability of the jth spread ðj ¼ 1; 2; . . . ; JÞ. It is
computed in order from smallest to largest as follows:

ĝj ¼
Min½MaxfUj ; 0g; 1�; j ¼ 1;

Min½MaxfUj ; 0g; 1�
Pj�1

k¼1ĝk�; j ¼ 2; 3; . . . ; J:

(
(16)

One version of a pure price clustering model, called Effective Tick3, is simply a
probability-weighted average of each effective spread size divided by the average price

Effective Tick3 ¼

PJ
j¼1ĝjsj

P̄
. (17)

The idea behind the name is that the minimum tick size tells you the ticks that are allowed,
but the effective tick size tells you the weighted-average tick size that is effectively used.
The effective tick model is very flexible. Possible effective spreads (sj’s) can easily be

added based on smaller increments (such as $ 1
256

or $ 1
128

in a fractional world or subpennies
in a decimal world), added based on larger increments, or deleted. Similarly, it is trivial to
scale the possible effective spreads and cluster definitions up or down by orders of
magnitude if a particular stock/time period trades in a different price range (i.e., Berkshire
Hathaway).11 The observed price increments in the data usually suggest what possible
effective spreads are relevant for a particular stock/time period.
A simpler version, called Effective Tick,12 is the same except that it only uses trade prices.

In other words, it throws away the no-trade midpoints ðNJþ1 ¼ NJþ2 ¼ � � � ¼ N2J ¼ 0Þ.
Another simple version, called Effective Tick2, is the same as Effective Tick, except that it
10Appendix A provides the required modification to accommodate any decimal or fractional price grid.
11Equivalently, the raw prices/midpoints can be scaled down (e.g., divided by 1,000 for Berkshire Hathaway)

and then the estimated effective spread can be scaled back up (multiplied by 1,000).
12Effective Tick and Effective Tick2 are jointly developed by this paper and Goyenko et al. (2009).
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uses all trade and non-trade days. In other words, it treats all prices as if they were trade
prices. These versions might be useful if trade prices are substantially more informative than
no-trade midpoints or for non-U.S. databases where no-trade midpoints are not available.

The final version, called Effective Tick4, integrates two attributes of the daily data: price
clustering and the No-Trade Quoted Spread. Specifically, it uses the price clustering
information from trading days and the no-trade quoted spread information from no-trade
days as follows:

Effective Tick4 ¼

m̂ðEffective Tick1Þ þ
ð1� m̂Þ

1

NTD

PNTD
t¼1 PQSt When NTD40;

0 When NTD ¼ 0

8<
:

P̄
,

(18)

where m̂ is the estimated probability of a trading day given by

m̂ ¼
TD

TDþNTD
(19)

and where TD and NTD are the number of trading days and no-trade days, respectively.
3.2. A pure serial covariance model including no-trade midpoints

Another interesting attribute of the daily data is the serial covariance of observed price
changes. Roll (1984) uses the serial covariance to develop a proxy of the effective spread.
He assumes that a security trades half of time at the bid and half of time at the ask. The
bouncing of the security’s price back and forth between the bid and ask creates negative
serial covariance. Roll’s famous formula writes the bid–ask spread as a simple function of
the serial covariance.

I extend the Roll model by considering the possibility of a no-trade day where the
reported price is the closing midpoint. To illustrate this extension, consider the simple case
in which the midpoint is constant. That is, suppose that no fundamental information
comes out about the firm and liquidity providers do not have to contend with adverse
selection or inventory concerns. Fig. 2 provides a schematic of nine possible paths of the
reported closing price given that the date t�1 closing price was at the bid.

On any date, let m be the probability of a trading day and 1�m be the probability of a no-
trade day. Maintaining all of the assumptions of the Roll framework, including that the
Fig. 2. Possible paths of the reported closing price.
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bid and ask price are equally likely, then on any given date the bid and ask each have a
probability of m=2 and the midpoint has a probability of 1� m.

Let S be a constant spread. Let Pt be the reported closing price on date t. Table 1 shows
the probability distribution of the subsequent price changes DPt � Pt � Pt�1 and DPtþ1 �

Ptþ1 � Pt conditional on the date t� 1 price.
From any of the three possible starting points (bid, midpoint, or ask) for Pt�1, there are

always three possible immediate price changes DPt and five possible subsequent price
changes DPtþ1. Given the independence of each date’s price moves, all of the probabilities
are identical in the three boxes in Table 1. The only difference in the three boxes is the
immediate price changes DPt.

Given that the initial probabilities for Pt�1 being a bid, midpoint, or ask are m=2, 1� m,
m=2, respectively, then Table 2 reports the combined joint distribution of DPt and DPtþ1.

From Table 2, it is easy to compute the serial covariance of the joint distribution as

CovðDPt;DPtþ1Þ ¼ �
mS2

4
. (20)

Solving for S yields

S ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Cov DPt;DPtþ1ð Þ

m

s
. (21)

This is identical to Roll’s formula, except for the probability of a trading day m in the
denominator. In Roll’s original framework, m ¼ 1. Substituting this into the equation
above yields Roll’s formula.

Mirroring Roll’s approach, the extended formula above was derived in the simple case
of no innovations in the fundamental value of the security. In Roll’s appendix, he drops
that assumption and allows innovations in the fundamental value. He maintains the
assumptions that: (1) markets are efficient and (2) innovations in the fundamental value of
the security are independent of buy/sell realizations. The former assumption implies that
the covariance between the fundamental value innovation on one date and the
fundamental value innovation on another date must be zero. The later assumption
implies that the covariance between the fundamental value innovation on one date and the
Table 2

Combined joint distribution of successive price changes.
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buy/sell realization on another date must be zero. So, the only non-zero source of serial
covariance is the bid/ask bounce. Thus, the basic formula that Roll derives in the simple
case, also applies in the more general case when innovations in the fundamental value
are permitted.
The identical logic applies in this extended framework. The extended formula shown in

Eq. (6), which was derived in the simple case, also applies in the more general case when
innovations in the fundamental value are permitted.
Another issue which is important for the extended Roll model is splits and dividends.

Consider a stock with a closing price of $60 on one day, does a 2-for-1 split to open at $30
the next day, and then closes at $29. The raw, close-to-close price change is �$31. If the
raw price change is included in the serial covariance computation, it will greatly distort
the result. In this case, �$30 of the price change was due to the 2-for-1 split and only the
remaining price change of �$1 was due to new information and/or bid/ask/midpoint
bounce. Thus, it is appropriate to remove the portion of the price change due to splits or
dividends and use the remaining price change to compute the serial covariance.
Let art be the adjusted return on date t, which accounts for splits and dividends. For the

U.S., the CRSP stock database includes adjusted returns.13 Let APt be the adjusted price
on date t, which accounts for splits and dividends. Given the adjusted price, the adjusted
return is simply art ¼ APt=APt�1 � 1. Define the adjusted price change DP�t as

DP�t ¼ art � Pt�1, (22)

where Pt�1 is the unadjusted price on date t� 1. Note that the adjusted price change DP�t is
not the same thing as the change in the adjusted price APt � APt�1. To see why the
adjusted price change DP�t is better to use, suppose that a firm splits its stock from $60 to
$30 on March 10. It is likely that the stock’s effective spread on March 10–31 is smaller
than its effective spread on March 1–9 and that its effective spread for all of March is a
weighted average of before and after. The purpose of computing the adjusted price change
DP�t is to remove the $30 drop on the split date, but also to allow the smaller price changes
generated by its smaller effective spread from March 10 to March 31 to influence the
extended Roll estimate for all of March. Removing the price change due to splits and
dividends is potentially helpful not only to the extended Roll model, but also for the
Hasbrouck Gibbs sampler measure described in Hasbrouck (2004).
Another important issue is price changes generated by systematic versus idiosyncratic

forces. After controlling for splits and dividends, the adjusted returns of an individual
stock can be decomposed into three parts: (1) systematic value innovations in the
individual stock generated by systematic innovations in the market or in broad macro
factors, (2) idiosyncratic value innovations in the individual stock generated by firm-
specific innovations, and (3) bid/ask/midpoint bounce. From a ‘‘signal extraction’’
perspective, the bid/ask/midpoint bounce is the signal to be extracted and the systematic
value innovations and idiosyncratic value innovations are both noise terms. In principle, it
should be useful to remove the systematic value innovations, because the residuals that are
left will have a higher signal-to-noise ratio.
13For the rest of the world, Datastream, Bloomberg, and other international data vendors provide daily

adjusted prices for all stocks on exchanges around the world.
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The empirical procedure is to perform a ‘‘market model’’ regression14

art � rf ¼ aþ bðrmt � rf Þ þ zt, (23)

where rf is the daily riskfree rate, a and b are the regression coefficients, rmt is the value-
weighted market return on date t, and zt is the regression residual. Then use the residual to
compute the idiosyncratic adjusted price change DP��t as

DP��t ¼ zt � Pt�1. (24)

Both versions of the extended Roll models use this idiosyncratic adjusted price change
DP��t . The first version, called Extended Roll1, uses zero when the serial covariance is
positive as follows:

Extended Roll1 ¼

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CovðDP��t ;DP��tþ1Þ

m̂

s

P̄
when CovðDP��t ;DP��tþ1Þo0;

0 when CovðDP��t ;DP��tþ1Þ40:

8>>>><
>>>>:

(25)

The second version, called Extended Roll2, substitutes Effective Tick when the serial
covariance is positive. That is, set

Extended Roll2 ¼

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CovðDP��t ;DP��tþ1Þ

m̂

s

P̄
when CovðDP��t ;DP��tþ1Þo0 and

EffectiveTick when CovðDP��t ;DP��tþ1Þ40:

8>>>><
>>>>:

(26)

3.3. A pure no-trade quoted spread model

Eckbo and Norli (2002) use the low-frequency high/ask and low/bid variables to create a
market-wide liquidity measure. Specifically, for each month they identify all stocks that
meet the following three conditions: (1) 10 or more trading days in the month, (2) one or
more no-trading days in the month, and (3) a stock price between $1 and $1,000. Then, for
each identified stock they compute the average value of the percent quoted spread over all
no-trading days. Finally, they exclude the two most extreme observations at both ends of
the cross-section and aggregate the remaining stocks into a market-wide liquidity measure
by computing an equally weighted average.15

Building on the spirit of Eckbo and Norli, I create a pure no-trade quoted spread proxy
for individual stock-months. The main downside to using the no-trade bid and ask prices is
that they are only available a small portion of the time. In my sample, only 26% of the
62,100 stock-months contain one or more no-trade days. The other 74% of the stock-
months have trades on every day of the month and thus, do not provide no-trade bid and
ask prices.
14As an alternative methodology, the market model regression could be replaced by a factor model regression.

That is, individual stock adjusted returns could be regressed on any asset pricing factors (e.g., the Fama-French,

1993 three factors). Again, the purpose of removing value innovations due to systematic factors is to achieve

greater precision in parsing the bid/ask/midpoint bounce from the idiosyncratic value innovations.
15Recently, Corwin and Schultz (2009) develop another measure of liquidity using high/ask and bid/low.
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Recall that NTD is the number of no-trade days in a given estimation time interval.
Define the No-Trade Quoted Spread as

No Trade Quoted Spread ¼
1

NTD

PNTD

t¼1

QSt

� ��
P̄ When NTD40;

0 When NTD ¼ 0:

8><
>: (27)

3.4. Combinations

So far in this section, I have developed three pure single-attribute models based on: (1)
price clustering, (2) serial covariance accounting for no-trade midpoints, and (3) no-trade
quoted spread.16 Now, I am ready to define combined models that are linear combinations
of the simpler models. I call them multi-factor models. Intuitively, we can think of single-
attribute models as capturing the truth plus different error terms. The potential advantage
of a multi-factor model is to diversify away some of the imperfectly correlated error terms.
This potential advantage is formally demonstrated below.
Let Y be the true value of the spread benchmark. Assume that Y is a random variable

given by Y ¼ Ȳ þ �Y , where Ȳ is a constant mean and �Y is normally distributed error

term �Y	Nð0; s2Y Þ. Let X and Z be two spread proxies based upon two different attributes.

We can model these attributes by assuming that each spread proxy represents the truth

plus its own noise. That is, X ¼ Y þ �X and Z ¼ Y þ �Z, where �X	Nð0;s2X Þ and

�Z	Nð0;s2ZÞ. Both error terms are assumed to be independent of �Y , but are allowed to

have a non-zero correlation with each other r� ¼ Corrð�X ; �ZÞ. Without loss of generality,
the spread proxy X is assumed to be better than the spread proxy Z, in the sense of X being

more precise than Z ðs2Xos2ZÞ. It is straightforward to compute the correlation between the

spread proxy X and the spread benchmark Y as rXY ¼ sY=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Y þ s2X

p
.

Define a multi-factor model L as a linear combination of the two spread proxies

L ¼ wxX þ wzZ, (28)

where wx and wz are constants. Then the correlation between the multi-factor model L and

the spread benchmark Y is rLY ¼ sY=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Y þ w2

Xs
2
X þ w2

Zs
2
Z þ 2wX wZsXsXr�

p
.

Let G be the gain (improvement) in the correlation of the multi-factor model L over the
better spread proxy X

G � rLY � rXY ¼
sYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2Y þ w2
Xs

2
X þ w2

Zs
2
Z þ 2wX wZsXsXr�

p �
sYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2Y þ s2X
p . (29)

By inspection, the multi-factor gain is positive ðG40Þ when the multi-factor model L

denominator is less than the better spread proxy X denominator, w2
Xs

2
X þ w2

Zs
2
Zþ

2wX wZsXsXr�os2X . From this comparison, it is clear that a higher error variance of the
second best proxy tends to reduce the multi-factor gain ð@G=@s2Zo0Þ, whereas a lower
error correlation tends to increase the multi-factor gain ð@G=@r�o0Þ. In other words, a
multi-factor model correlation can be greater than the better individual proxy correlation,
when the diversified away measurement error more than offsets the higher error variance
16Other spread proxies in the literature are based on other attributes. The LOT measures are based on a model

of informed versus uninformed trading. Zero return measures are based on the relative lack of return innovations

in stocks with a large percentage spread. And so on.
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of the second best proxy. And the more different the two factors are ðr� #Þ, then the larger
the gain from diversification is ðG "Þ.

Multi-factor models could take on an infinite number of possibilities. In the next section,
two specific multi-factor models are empirically analyzed on the U.S. data. Both multi-
factor models are simple 50–50% combinations of the simpler models:

Multi-Factor1 ¼ ð1=2Þ � Effect Tick4þ ð1=2Þ � Extended Roll2,

Multi-Factor2 ¼ ð1=2Þ � Extended Roll2þ ð1=2Þ �No Trade Quoted Spread. (30)

4. An empirical comparison on three performance dimensions

I compute the spread benchmarks from the NYSE TAQ data from 1993 to 2005.
Because of the enormous size of the TAQ data, a random sample is selected. Following the
methodology of Hasbrouck (2009), a stock must meet five criteria to be eligible: (1) it has
to be a common stock, (2) it has to be present on the first and last TAQ master file for the
year, (3) it has to have the NYSE, AMEX, or NASDAQ as the primary listing exchange,
(4) it does not change primary exchange, ticker symbol, or cusip over the year, and (5) has
to be listed in CRSP. Four hundred stocks are randomly select each year from the universe
of eligible stocks in 1993. Rolling forward, if any of the 1993 selections is not eligible in
1994, then a replacement is randomly drawn from the universe of eligible stocks in 1994.
This process continues rolling forward over a 13-year span. Thirty stock-months are lost
because there are an insufficient number of prices (2 or less) to compute all of the measures.
An additional 270 stock-months have suspicious bid or ask prices that yield a spread wider
than $1.00 or are missing entirely from TAQ (despite being on CRSP). Thus, the final
sample size is 62,100 stock-months.
4.1. Full sample results

Using the full sample, Table 3 compares the performance of the new low-frequency
spread proxies developed in this paper and existing low-frequency spread proxies
(Hasbrouck Gibbs, LOT Mixed, LOT Y-split, Pastor and Stambaugh, Roll, and Zeros)
from the prior literature. Appendix C provides the formulas for the existing proxies. For
the Effective Tick and Holden measures, a fractional grid accounting for price increments
as small as $ 1

64
was used from 1/93 to 1/01 for NYSE stocks and from 1/93 to 3/01 for

NASDAQ stocks. A decimal grid was used thereafter. The benchmarks are the volume-
weighted, percent effective spread and the time-weighted, percent quoted spread.

First consider Panel A, which is the joint time-series cross-sectional correlation of each
low-frequency proxy with two benchmarks, percent effective spread and percent quoted
spread, based on individual firms (62,100 stock-months). Checking the two versions of the
integrated model, the highest joint correlations come from Holden2 (0.785 with percent
effective spread and 0.865 with percent quoted spread). The highest joint correlation from
the existing low-frequency spread proxies is Hasbrouck Gibbs (0.740 and 0.787 with the two
benchmarks, respectively). Immediately below each correlation is a list of the other proxies
that a given proxy is insignificantly different from. When a ‘‘*’’ appears below a
correlation, then that proxy’s correlation is statistically significantly different from all
other correlations in the same row. Holden2 is significantly different from any other
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Table 3

Low-frequency spread proxies compared to high-frequency percent effective and quoted spreads using the full sample.

The high-frequency benchmark percent effective spread is a volume-weighted average based on every trade and corresponding BBO quote in the NYSE TAQ

database for a sample firm-month. The high-frequency benchmark percent quoted spread is a time-weighted average based on every BBO quote in the sample firm-

month. All low-frequency spread proxies are calculated from CRSP daily stock data for a sample firm-month. The sample spans 1993–2005 inclusive and consists of

400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months. Bold numbers are statistically different from

zero at the 1% level when N ¼ 62,100 or at the 5% level when N ¼ 156. * (**) means that the proxy’s correlation / prediction error is statistically significantly

different from all of the other correlations/prediction errors in the same row at the 1% (5%) level.

New low-frequency spread proxies Existing Low-Frequency Spread Proxies

Holden

(H)

Holden

2 (H2)

Effective

Tick

(ET)

Effective

Tick2

(ET2)

Effective

Tick3

(ET3)

Effective

Tick4

(ET4)

Extended

Roll1

(ER1)

Extended

Roll2

(ER2)

No

Trade

Quoted

Spread

(NTQS)

Multi-

Factor1

(MF1)

Multi-

Factor2

(MF2)

Pastor

and

Stam-

baugh

(P&S)

Roll

(R)

Has-

brouck

Gibbs

(HG)

LOT

Mixed

(LM)

LOT Y-split

(LYS)

Zeros

(Z)

Panel A. Joint Time-series cross-sectional correlations with high-frequency benchmarks based on individual firms (N ¼ 62,100 stock-months)

% Effective spread 0.704 0.785 0.656 0.642 0.739 0.777 0.669 0.706 0.500 0.665 0.805 �0.147 0.627 0.740 0.621 0.697 0.453

Insignificantly different from ER2 * * * HG * MF1 H * ER1 * * LM ET3 R * *

% Quoted spread 0.763 0.865 0.704 0.690 0.794 0.851 0.727 0.764 0.567 0.733 0.877 �0.117 0.675 0.787 0.677 0.750 0.539

Insignificantly different from ER2 * * * * * * H * * * * LM * R * *

Panel B. Pure time-series correlations with high-frequency benchmarks based on an equally weighted portfolio (N ¼ 156 portfolio-months)

% Effective spread 0.951 0.953 0.941 0.939 0.946 0.959 0.955 0.954 0.921 0.962 0.971 �0.366 0.925 0.905 0.722 0.931 0.874

Insignificantly different from H2 H ET2 ET ET ER1 ET ET ET2 ET4 ** ** ET Z ** ET2 HG

ER1 ER1 ET3 ER1 ER1 ER2 ET2 ET2 R ER1 ET2 NTQS R

ER2 ER2 ER1 ER2 ER2 MF1 ET3 ET3 HG ER2 NTQS NTQS

ER2 NTQS ET4 ET4 LY LY
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% Quoted spread 0.985 0.989 0.979 0.978 0.985 0.990 0.928 0.931 0.950 0.977 0.977 �0.359 0.876 0.861 0.758 0.977 0.955

Insignificantly different from ET3 ET4 ET2 ET H H2 ER2 ER1 Z ET ET ** HG R ** ET NTQS

MF1 MF1 ET2 ET2 ET2

MF2 MF2 MF2 MF1 MF1

LY LY LY LY MF2

Panel C. Average root mean squared prediction error of high frequency benchmarks (N ¼ 156 months)

%Effective spread 0.0286 0.0234 0.0311 0.0316 0.0289 0.0261 0.0317 0.0293 0.0434 0.0290 0.0226 4.8372 0.0322 0.0287 0.0606 0.0342 0.1610

Insignificantly different from HG MF2 ET2 ER H MF1 ET H ** H H2 ** ET H ** ** **

ET3 ER1 ER1 ER2 ET2 ET ET ET2 ET3

ER2 ER2 MF1 MF1 MF1 ET3 ET2 ER1 ER2

MF1 MF1 R HG R MF1 ET3 MF1 MF1

R HG ET4

ER1

ER2

R

HG

%Quoted spread 0.0312 0.0240 0.0336 0.0346 0.0325 0.0252 0.0313 0.0284 0.0384 0.0234 0.0215 4.8370 0.0339 0.0329 0.0554 0.0330 0.1555

Insignificantly different from ER1 MF1 ER1 NTQS ER1 MF1 H ** H H2 MF1 ** ET ET ** ET

NTQS NTQS R NTQS ET ET ET4 ET2 ET3 ET3

R HG ET3 ET2 MF2 NTQS ER1 ER1

HG LY HG ET3 HG NTQS NTQS

LY LY R LY R R

HG LY HG

LY
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proxies. Specifically, its correlation with percent effective spread is significantly higher than
the corresponding correlation of any of the existing proxies and the same is true of its
correlation with respect to percent quoted spread.
Next consider the single-attribute models. Their correlations are bit lower. Effective

Tick3, Extended Roll2, and the No-Trade Quoted Spread have the highest correlation with
both benchmarks in their attribute categories. The two-attribute model Effective Tick4
(which integrates price clustering and the no-trade quoted spread) has higher correlations
with both benchmarks.
Finally, consider the combined models. Multi-Factor2 has a joint correlation of 0.805

with percent effective spread and 0.877 with percent quoted spread. These correlations are
significantly higher than any of the other new or old proxies. Multi-Factor2 includes all
three attributes, because it combines Effective Tick4 (which integrates price clustering and
the no-trade quoted spread) and Extended Roll2 (based on serial covariance accounting for
no-trade midpoints).
Next, consider Panel B. For each proxy and benchmark, I create an aggregate spread

measure based on an equally weighted portfolio across all 400 firms. This panel reports the
pure time-series correlation of each aggregate spread proxy with each aggregate
benchmark over 156 monthly observations. All of the portfolio correlations in Panel B
are much higher than their individual firm counterparts in Panel A. This indicates that
aggregating across assets causes a substantial amount of the measurement error to be
diversified away. This is consistent with Goyenko et al. (2009) and Hasbrouck (2009), who
also find much higher portfolio correlations.
First consider the two integrated models. Holden and Holden2 have time-series

correlations with percent effective spread of 0.951 and 0.953, respectively. These two
correlations are statistically indistinguishable from each other. Holden2 has the highest
time-series correlation with percent quoted spread at 0.989. The integrated measures have
significantly higher time-series correlations with both benchmarks than any of the existing
proxies.
Turning to the single-attribute models, Effective Tick3, Extended Roll1, and the

No-Trade Quoted Spread have relatively high time-series correlations with both
benchmarks. The two-attribute model Effective Tick4 has even higher time-series
correlations with both benchmarks.
Finally, consider the combined models. Multi-Factor2 has a time-series correlation with

percent effective spread of 0.971. Multi-Factor2 is significantly higher than any of the other
new or old proxies. Regarding a time-series correlation with percent quoted spread, Multi-

Factor1, Multi-Factor2, and LOT Y-split are tied at 0.977. But all three are edged out by
Holden2 and Effective Tick4 at 0.989 and 0.990, respectively, which are significantly higher
time-series correlations than any of the existing proxies.
Finally, Panel C examines the distance (tracking error) between each proxy and the

benchmarks. I compute the cross-sectional root mean squared error (RMSE) between each
proxy and the benchmarks across all stocks in a given month and then average the cross-
sectional RMSE over all 156 months.
Checking the integrated models, the lowest RMSEs come from Holden2 (0.0234

and 0.0240 with the two benchmarks, respectively). The lowest RMSEs from the
existing low-frequency spread proxies come from Hasbrouck Gibbs (0.287 and 0.0329). So,
Holden2 has significantly lower RMSEs with both benchmarks than any of the existing
proxies.
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Turning to the one-attribute models, Effective Tick3, Extended Roll2, and the No-Trade

Quoted Spread have the lowest RMSEs with both benchmarks in their attribute categories.
The two-attribute model Effective Tick4 has lower RMSEs with both benchmarks.

Finally, consider the combined models. Multi-Factor2 has the lowest RMSEs (0.0226
and 0.0204). Both RMSEs are statistically indistinguishable from Holden2, but
significantly lower than rest of the new proxies or any of the old proxies.

To summarize the Table 3 full sample results, I find that on all three performance
dimensions with regard to both benchmarks, the new integrated model Holden2 does
significantly better than existing low-frequency spread proxies. I also find that on all three
performance dimensions with regard to both benchmarks, the new combined model Multi-

Factor2 does significantly better than existing low-frequency spread proxies, except for one
tie. Summarizing six tests (three performance dimensions X two benchmarks), the
combined model Multi-Factor2 does significantly better than the integrated model Holden2
on four out of six tests.

4.2. Size, price, and tick size regime results

In the next three tables, I examine the robustness of these results by size quintile, by price
quintile, and by tick size regime. Table 4 breaks out the sample by size quintile. The joint
time-series cross-sectional correlations for individual firms (Panel A) are generally better
for small firms and worse for larger firms. Similarly, the time-series correlations for
portfolios (Panel B) are generally better for small firms and worse for larger firms. By
contrast, the average RMSEs (Panel C) are quite consistently better for larger firms. In
Panels A and B, the Roll and Hasbrouck Gibbs correlations fall sharply for larger firms,
consistent with the finding of Goyenko et al. (2009). In the same family of single attribute
proxies, Extended Roll1 and Extended Roll2 do better, but are not great. In nearly all cases,
Holden2 is the best integrated model and Multi-Factor2 is the best combined model. Across
all comparisons (rows) in Table 4, Multi-Factor2 is the most frequent winner.

Table 5 breaks out the sample by price quintile. In Panels A and B, most of the proxies
perform about the same across different price quintiles. The notable exception is that Roll

and Hasbrouck Gibbs (and to a lesser extent Extended Roll1 and Extended Roll2), drop off
sharply for high price firms. In Panel C, the average RMSEs are quite consistently better
for high-priced firms. In the majority cases, Holden2 is the best integrated model and
Multi-Factor2 is the best combined model. Across all comparisons (rows) in Table 5,
Multi-Factor2 is the most frequent winner.

Table 6 breaks out the sample by tick size regime. The joint time-series cross-sectional
correlations for individual firms (Panel A) worsen modestly in the decimal era. The time-
series correlations for portfolios (Panel B) are the same or improve modestly in the decimal
era. Average root mean squared errors (Panel C) improve modestly in the decimal era. In
nearly all cases, Holden2 is the best integrated model and Multi-Factor2 is the best
combined model. Across all comparisons (rows) in Table 6, Multi-Factor2 is the most
frequent winner.

To summarize Tables 4–6, I find that the best-performing new proxies are robust by size
quintiles, by price quintiles, and by tick size regime. Consistently, Holden2 is the best
integrated model and Multi-Factor2 is the best combined model. Across all comparisons
(rows) in Tables 4–6, Multi-Factor2 is the most frequent winner and Holden2 is the second
most frequent winner.



A
R
TIC

LE
IN

PR
ES

S

Table 4

Low-frequency spread proxies compared to high-frequency percent effective and quoted spreads by size quintiles.

The high-frequency benchmark percent effective spread is a volume-weighted average based on every trade and corresponding BBO quote in the NYSE TAQ

database for a sample firm-month. The high-frequency benchmark percent quoted spread is a time-weighted average based on every BBO quote in the sample firm-

month. All low-frequency spread proxies are calculated from CRSP daily stock data for a sample firm-month. The sample spans 1993–2005 inclusive and consists of

400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months. Bold numbers are statistically different from

zero at the 1% level when N ¼ 62,100 or at the 5% level when N ¼ 156.

New low-frequency spread proxies Existing low-frequency spread proxies

Holden

Holden

2

Effective

Tick

Effective

Tick2

Effective

Tick3

Effective

Tick4

Extended

Roll1

Extended

Roll2

No

Trade

Quoted

Spread

Multi-

Factor1

Multi-

Factor2

Pastor

and

Stambaugh Roll

Has-

brouck

Gibbs

LOT

Mixed

LOT

Y-split Zeros

Panel A. Joint time-series cross-sectional correlations with high-frequency benchmarks based on individual firms (N ¼ 62,100 stock-months)

% Effective spread

Size 1 (smallest) 0.652 0.763 0.588 0.573 0.684 0.750 0.642 0.670 0.433 0.580 0.782 �0.179 0.609 0.792 0.627 0.675 0.349

Size 2 0.548 0.629 0.519 0.508 0.642 0.612 0.555 0.598 0.439 0.665 0.687 �0.172 0.525 0.658 0.460 0.577 0.339

Size 3 0.613 0.672 0.604 0.597 0.652 0.676 0.462 0.530 0.400 0.645 0.666 0.046 0.436 0.482 0.398 0.523 0.345

Size 4 0.626 0.631 0.608 0.607 0.648 0.621 0.272 0.345 0.172 0.485 0.505 0.049 0.271 0.277 0.302 0.477 0.328

Size 5 (largest) 0.620 0.699 0.618 0.601 0.661 0.703 0.240 0.310 0.418 0.477 0.479 �0.012 0.171 0.191 0.294 0.541 0.335

% Quoted spread

Size 1 (smallest) 0.714 0.844 0.635 0.621 0.737 0.825 0.703 0.734 0.488 0.643 0.858 �0.134 0.669 0.849 0.689 0.722 0.434

Size 2 0.620 0.771 0.579 0.565 0.724 0.739 0.644 0.685 0.632 0.815 0.807 �0.152 0.587 0.739 0.533 0.661 0.481

Size 3 0.709 0.820 0.682 0.666 0.748 0.792 0.536 0.605 0.596 0.802 0.769 �0.016 0.473 0.508 0.479 0.638 0.523

Size 4 0.710 0.735 0.708 0.704 0.749 0.714 0.281 0.355 0.366 0.567 0.547 0.058 0.256 0.222 0.332 0.571 0.504

Size 5 (largest) 0.698 0.822 0.730 0.708 0.786 0.845 0.198 0.273 0.562 0.490 0.489 0.006 0.113 0.134 0.342 0.633 0.495
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Panel B. Pure time-series correlations with high-frequency benchmarks based on an equally-weighted portfolio (N ¼ 156 portfolio-months)

% Effective spread

Size 1 (smallest) 0.939 0.940 0.930 0.926 0.937 0.945 0.959 0.957 0.862 0.939 0.961 �0.333 0.945 0.963 0.790 0.929 0.847

Size 2 0.914 0.924 0.901 0.901 0.926 0.932 0.935 0.937 0.900 0.936 0.945 �0.378 0.938 0.936 0.708 0.905 0.845

Size 3 0.931 0.926 0.914 0.913 0.918 0.929 0.899 0.920 0.816 0.928 0.948 �0.010 0.864 0.811 0.668 0.887 0.810

Size 4 0.882 0.882 0.854 0.855 0.855 0.875 0.480 0.640 0.651 0.847 0.857 0.035 0.336 0.365 0.487 0.809 0.727

Size 5 (largest) 0.856 0.856 0.818 0.817 0.802 0.825 0.528 0.651 0.410 0.848 0.861 �0.028 0.371 0.435 0.582 0.779 0.576

% Quoted spread

Size 1 (smallest) 0.974 0.980 0.967 0.965 0.972 0.982 0.963 0.964 0.894 0.958 0.985 �0.313 0.948 0.977 0.838 0.964 0.925

Size 2 0.966 0.976 0.949 0.950 0.977 0.975 0.949 0.954 0.954 0.981 0.975 �0.339 0.946 0.937 0.746 0.958 0.939

Size 3 0.970 0.984 0.969 0.965 0.981 0.986 0.864 0.883 0.935 0.973 0.958 �0.040 0.799 0.694 0.702 0.959 0.949

Size 4 0.982 0.983 0.984 0.984 0.983 0.984 0.300 0.486 0.826 0.840 0.818 0.014 0.134 0.113 0.541 0.966 0.944

Size 5 (largest) 0.965 0.979 0.974 0.972 0.979 0.985 0.098 0.257 0.609 0.582 0.603 �0.039 �0.078 �0.008 0.562 0.961 0.894

Panel C. Average root mean squared prediction error of high frequency benchmarks (N ¼ 156 months)

% Effective spread

Size 1 (smallest) 0.0519 0.0443 0.0575 0.0585 0.0526 0.0463 0.0516 0.0474 0.0793 0.0527 0.0383 10.437 0.0520 0.0499 0.0980 0.0622 0.2151

Size 2 0.0278 0.0249 0.0293 0.0298 0.0278 0.0257 0.0304 0.0276 0.0377 0.0247 0.0222 0.9819 0.0305 0.0264 0.0631 0.0328 0.1950

Size 3 0.0166 0.0152 0.0175 0.0177 0.0176 0.0157 0.0229 0.0207 0.0255 0.0159 0.0147 0.1667 0.0235 0.0177 0.0445 0.0202 0.1503

Size 4 0.0092 0.0092 0.0099 0.0099 0.0099 0.0097 0.0199 0.0186 0.0157 0.0115 0.0111 0.0278 0.0211 0.0130 0.0356 0.0125 0.1090

Size 5 (largest) 0.0039 0.0037 0.0041 0.0041 0.0040 0.0038 0.0142 0.0137 0.0066 0.0069 0.0071 0.0266 0.0163 0.0107 0.0237 0.0061 0.0852

% Quoted spread

Size 1 (smallest) 0.0587 0.0432 0.0638 0.0658 0.0613 0.0453 0.0516 0.0466 0.0693 0.0420 0.0371 10.437 0.0565 0.0594 0.0875 0.0615 0.2046

Size 2 0.0300 0.0241 0.0319 0.0326 0.0308 0.0254 0.0296 0.0262 0.0331 0.0191 0.0215 0.8293 0.0313 0.0307 0.0679 0.0318 0.1937

Size 3 0.0177 0.0153 0.0188 0.0192 0.0192 0.0162 0.0228 0.0202 0.0239 0.0140 0.0149 0.1681 0.0242 0.0200 0.0410 0.0194 0.1461

Size 4 0.0089 0.0086 0.0094 0.0094 0.0096 0.0091 0.0192 0.0176 0.0146 0.0106 0.0108 0.0275 0.0206 0.0137 0.0337 0.0112 0.1070

Size 5 (largest) 0.0036 0.0032 0.0035 0.0036 0.0035 0.0032 0.0145 0.0139 0.0060 0.0071 0.0072 0.0260 0.0167 0.0113 0.0236 0.0055 0.0849
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Table 5

Low-frequency spread proxies compared to high-frequency percent effective and quoted spreads by price quintiles.

The high-frequency benchmark percent effective spread is a volume-weighted average based on every trade and corresponding BBO quote in the NYSE TAQ

database for a sample firm-month. The high-frequency benchmark percent quoted spread is a time-weighted average based on every BBO quote in the sample firm-

month. All low-frequency spread proxies are calculated from CRSP daily stock data for a sample firm-month. The sample spans 1993–2005 inclusive and consists of

400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months. Bold numbers are statistically different from

zero at the 1% level when N ¼ 62,100 or at the 5% level when N ¼ 156.

New low-frequency spread proxies Existing low-frequency spread proxies

Holden

Holden

2

Effective

Tick

Effective

Tick2

Effective

Tick3

Effective

Tick4

Extended

Roll1

Extended

Roll2

No

Trade

Quoted

Spread

Multi-

Factor1

Multi-

Factor2

Pastor

and

Stambaugh Roll

Has-

brouck

Gibbs

LOT

Mixed

LOT

Y-split Zeros

Panel A. Joint time-series cross-sectional correlations with high-frequency benchmarks based on individual firms (N ¼ 62,100 stock-months)

% Effective spread

Price 1 (lowest) 0.635 0.744 0.583 0.562 0.686 0.730 0.626 0.656 0.427 0.573 0.769 �0.157 0.588 0.766 0.601 0.661 0.413

Price 2 0.637 0.748 0.589 0.580 0.668 0.742 0.598 0.637 0.645 0.738 0.750 �0.208 0.534 0.728 0.479 0.624 0.359

Price 3 0.587 0.716 0.545 0.508 0.584 0.711 0.531 0.573 0.627 0.717 0.708 �0.176 0.415 0.568 0.376 0.554 0.409

Price 4 0.650 0.780 0.637 0.606 0.639 0.781 0.533 0.565 0.725 0.766 0.737 �0.178 0.390 0.459 0.398 0.617 0.519

Price 5 (Highest) 0.606 0.835 0.606 0.569 0.630 0.835 0.465 0.501 0.751 0.742 0.709 �0.209 0.294 0.283 0.405 0.670 0.448

% Quoted spread

Price 1 (lowest) 0.703 0.824 0.634 0.612 0.746 0.802 0.688 0.721 0.485 0.640 0.846 �0.123 0.649 0.828 0.667 0.709 0.492

Price 2 0.752 0.875 0.706 0.696 0.780 0.863 0.689 0.731 0.768 0.866 0.867 �0.155 0.607 0.798 0.555 0.713 0.477

Price 3 0.691 0.880 0.659 0.621 0.713 0.874 0.592 0.634 0.782 0.851 0.824 �0.141 0.452 0.613 0.453 0.679 0.554

Price 4 0.718 0.884 0.719 0.683 0.731 0.888 0.561 0.596 0.841 0.852 0.807 �0.156 0.405 0.458 0.438 0.680 0.611

Price 5 (Highest) 0.646 0.902 0.663 0.619 0.692 0.909 0.465 0.499 0.858 0.797 0.738 �0.164 0.282 0.258 0.414 0.703 0.531
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Panel B. Pure time-series correlations with high-frequency benchmarks based on an equally weighted portfolio (N ¼ 156 portfolio-months)

% Effective spread

Price 1 (lowest) 0.927 0.930 0.923 0.919 0.932 0.940 0.951 0.948 0.849 0.930 0.957 �0.247 0.926 0.954 0.767 0.909 0.841

Price 2 0.921 0.927 0.903 0.900 0.914 0.936 0.933 0.937 0.902 0.941 0.947 �0.292 0.935 0.935 0.702 0.896 0.814

Price 3 0.934 0.935 0.909 0.901 0.901 0.935 0.894 0.923 0.910 0.951 0.956 �0.306 0.822 0.850 0.621 0.885 0.830

Price 4 0.970 0.972 0.965 0.965 0.960 0.969 0.788 0.848 0.912 0.964 0.957 �0.326 0.600 0.614 0.654 0.953 0.925

Price 5 (highest) 0.898 0.892 0.877 0.877 0.854 0.872 0.486 0.588 0.611 0.842 0.827 �0.103 0.344 0.363 0.591 0.831 0.660

% Quoted spread

Price 1 (lowest) 0.968 0.976 0.962 0.959 0.972 0.979 0.953 0.954 0.877 0.955 0.981 �0.236 0.926 0.964 0.813 0.955 0.922

Price 2 0.981 0.986 0.967 0.968 0.980 0.985 0.942 0.946 0.948 0.980 0.976 �0.267 0.925 0.916 0.760 0.968 0.930

Price 3 0.987 0.987 0.977 0.977 0.980 0.986 0.851 0.888 0.957 0.972 0.965 �0.248 0.765 0.750 0.689 0.967 0.936

Price 4 0.974 0.986 0.975 0.976 0.982 0.987 0.719 0.783 0.955 0.952 0.933 �0.318 0.505 0.500 0.651 0.972 0.966

Price 5 (highest) 0.936 0.979 0.950 0.945 0.949 0.985 0.148 0.268 0.846 0.651 0.614 �0.109 �0.013 0.012 0.534 0.933 0.902

Panel C. Average root mean squared prediction error of high frequency benchmarks (N ¼ 156 months)

% Effective spread

Price 1 (lowest) 0.0499 0.0453 0.0552 0.0559 0.0489 0.0474 0.0525 0.0480 0.0817 0.0534 0.0387 8.8370 0.0527 0.0489 0.1039 0.0623 0.1950

Price 2 0.0282 0.0240 0.0301 0.0307 0.0300 0.0245 0.0307 0.0280 0.0359 0.0237 0.0220 2.7498 0.0314 0.0274 0.0571 0.0315 0.1721

Price 3 0.0182 0.0151 0.0195 0.0202 0.0199 0.0155 0.0224 0.0208 0.0230 0.0162 0.0149 0.4588 0.0230 0.0176 0.0418 0.0208 0.1734

Price 4 0.0124 0.0096 0.0132 0.0137 0.0136 0.0100 0.0175 0.0165 0.0149 0.0110 0.0103 0.3141 0.0184 0.0131 0.0340 0.0142 0.1417

Price 5 (highest) 0.0084 0.0059 0.0088 0.0091 0.0090 0.0061 0.0148 0.0142 0.0096 0.0084 0.0080 0.1096 0.0173 0.0134 0.0237 0.0087 0.1012

% Quoted spread

Price 1 (Lowest) 0.0534 0.0426 0.0583 0.0600 0.0542 0.0450 0.0517 0.0463 0.0727 0.0422 0.0362 8.8362 0.0553 0.0558 0.0946 0.0598 0.1871

Price 2 0.0308 0.0235 0.0328 0.0338 0.0333 0.0244 0.0301 0.0270 0.0317 0.0214 0.0191 2.7507 0.0328 0.0313 0.0517 0.0308 0.1665

Price 3 0.0222 0.0153 0.0235 0.0245 0.0243 0.0160 0.0223 0.0204 0.0193 0.0151 0.0133 0.4602 0.0248 0.0219 0.0377 0.0207 0.1673

Price 4 0.0171 0.0117 0.0179 0.0185 0.0184 0.0122 0.0187 0.0175 0.0133 0.0122 0.0106 0.3158 0.0209 0.0178 0.0320 0.0160 0.1373

Price 5 (highest) 0.0115 0.0074 0.0119 0.0122 0.0121 0.0076 0.0156 0.0149 0.0086 0.0093 0.0084 0.1105 0.0188 0.0160 0.0231 0.0103 0.0989
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4.3. Low-frequency benchmark results

From 1993 to the present, the CRSP stock database includes closing bid and ask prices
for all stocks. Table 7 compares the new and existing low-frequency spread proxies to the
low-frequency percent effective spread and to the low-frequency percent quoted spread.
The low-frequency benchmark percent effective spread is the daily average of the percent
effective spread based on the last trade price of the day and the closing bid and ask prices
for the sample firm-month. The low-frequency benchmark percent quoted spread is the
daily average of the percent quoted spread based on the closing bid and ask prices for the
sample firm-month.
In Panel A, the joint time-series cross-sectional correlations for individual firms are

generally much higher with regard to the low-frequency percent quoted spread than with
regard to low-frequency percent effective spread. In both cases, Holden2 is the overall
winner and Multi-Factor2 is the best combined model. In Panel B, the time-series
correlations for portfolios tend to be modestly higher with regard to the low-frequency
percent quoted spread than with regard to low-frequency percent effective spread, but all
of the correlations are in the high 0.80’s or 0.90’s for all of the new proxies. Surprisingly,
the winner with regard to low-frequency percent quoted spread is No Trade Quoted Spread

and the winner with regard to low-frequency percent effective spread is Effective Tick4.
Panel C tells an interesting story. The winner with regard to low-frequency percent

quoted spread is Multi-factor1 and the new proxies’ average RMSEs with respect to the
low-frequency percent quoted spread are in the range [0.0255,0.0421]. This range is the
same order of magnitude as the new proxies’ average RMSEs with respect to the high-

frequency percent quoted spread in Table 3, Panel C. By contrast, the winner with regard
to low-frequency percent effective spread is Zeros and the new proxies’ average RMSEs are
in the range [0.5357,0.5462], which is 10–20 times greater! This raises the question of
whether the new proxies have suddenly fallen flat with regard to low-frequency percent
effective spread or whether something is different about low-frequency percent effective
spread?
One problem with low-frequency percent effective spread is that last trade price is not

necessarily synchronous with the closing quotes. The closing bid–ask quotes are measured
at 4:00 p.m., but the last trade may have taken place minutes or even hours earlier when
the prevailing bid–ask quotes may have been very different. The mismatch of 4:00 p.m.
quotes and an earlier trade price adds noise to measurement of low-frequency percent
effective spread. To check on this possibility, Table 8 reports the descriptive statistics for
all four spread benchmarks. The means and medians of the four spread benchmarks are
relatively close. The standard deviations of high-frequency percent quoted spread, high-
frequency percent effective spread, and low-frequency percent quoted spread are relatively
close, spanning the range [0.0402, 0.0540]. However, the standard deviation of low-
frequency percent effective spread is 0.6885, more than 12 times larger! Looking at the
correlations, high-frequency percent quoted spread, high-frequency percent effective
spread, and low-frequency percent quoted spread have high correlations with each other
(in the 0.80’s). However, the correlations of low-frequency percent effective spread with the
other three spread benchmarks are much lower (in the 0.40’s and 0.50’s). The very high
standard deviation and low correlations suggest that low-frequency percent effective
spread is a very noisy benchmark. The much larger average RMSEs in Table 7, Panel C
and the lower correlations in Table 7, Panels A and B relative to low-frequency percent
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Table 6

Low-frequency spread proxies compared to high-frequency percent effective and quoted spreads by tick size regime.

The high-frequency benchmark percent effective spread is a volume-weighted average based on every trade and corresponding BBO quote in the NYSE TAQ

database for a sample firm-month. The high-frequency benchmark percent quoted spread is a time-weighted average based on every BBO quote in the sample firm-

month. All low-frequency spread proxies are calculated from CRSP daily stock data for a sample firm-month. The sample spans 1993–2005 inclusive and consists of

400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months. Bold numbers are statistically different from

zero at the 1% level when N ¼ 62,100 or at the 5% level when N ¼ 156.

New low-frequency spread proxies Existing low frequency spread proxies

Holden

Holden

2

Effective

Tick

Effective

Tick2

Effective

Tick3

Effective

Tick4

Extended

Roll1

Extended

Roll2

No

Trade

Quoted

Spread

Multi-

Factor1

Multi-

Factor2

Pastor

and

Stambaugh Roll

Has

brouck

Gibbs

LOT

Mixed

LOT

Y-split Zeros

Panel A. Joint time-series corss-sectional correalations with high-frequency benchmarks based on indidual firms (N ¼ 62,100 stock-months)

% Effective spread

$1/8 tick size 0.711 0.826 0.656 0.635 0.754 0.817 0.778 0.806 0.765 0.839 0.859 �0.176 0.714 0.851 0.648 0.726 0.415

$1/16 tick size 0.711 0.726 0.668 0.669 0.742 0.714 0.571 0.629 0.537 0.734 0.762 �0.075 0.519 0.634 0.518 0.680 0.430

$.01 tick size 0.610 0.682 0.557 0.541 0.642 0.677 0.482 0.520 0.227 0.345 0.648 �0.113 0.519 0.549 0.613 0.561 0.410

% Quoted spread

1/8 tick size 0.750 0.886 0.682 0.670 0.793 0.874 0.840 0.869 0.856 0.913 0.923 �0.134 0.774 0.902 0.693 0.757 0.448

$1/16 tick size 0.744 0.798 0.701 0.677 0.756 0.785 0.635 0.692 0.624 0.814 0.839 �0.059 0.565 0.685 0.553 0.700 0.498

$.01 tick size 0.683 0.806 0.622 0.589 0.693 0.790 0.547 0.585 0.277 0.401 0.740 �0.103 0.577 0.607 0.661 0.623 0.455

Panel B.Pure time-series correlations with high-frequency benchmarks based on an equally-weighted portfolio (54, 43, and 57 portfolio-months, respectively)

% Effective Spread

$1/8 tick size 0.949 0.964 0.941 0.949 0.955 0.967 0.926 0.941 0.914 0.952 0.968 �0.250 0.927 0.954 0.338 0.932 0.835

$1/16 tick size 0.867 0.784 0.866 0.864 0.832 0.773 0.821 0.845 0.430 0.909 0.934 �0.118 0.801 0.752 0.270 0.780 0.024

$.01 tick size 0.929 0.927 0.926 0.930 0.939 0.927 0.937 0.943 0.740 0.904 0.945 �0.227 0.930 0.910 0.914 0.910 0.769
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Table 6 (continued )

New low-frequency spread proxies Existing low frequency spread proxies

Holden

Holden

2

Effective

Tick

Effective

Tick2

Effective

Tick3

Effective

Tick4

Extended

Roll1

Extended

Roll2

No

Trade

Quoted

Spread

Multi-

Factor1

Multi-

Factor2

Pastor

and

Stambaugh Roll

Has

brouck

Gibbs

LOT

Mixed

LOT

Y-split Zeros

% Quoted spread

$1/8 tick size 0.963 0.979 0.940 0.951 0.972 0.977 0.932 0.944 0.948 0.944 0.974 �0.246 0.936 0.946 0.370 0.933 0.886

$1/16 tick size 0.843 0.929 0.835 0.836 0.896 0.924 0.510 0.535 0.745 0.843 0.803 �0.288 0.453 0.403 0.313 0.827 0.428

$.01 tick size 0.985 0.985 0.982 0.977 0.983 0.987 0.963 0.969 0.740 0.918 0.984 �0.187 0.944 0.944 0.978 0.977 0.877

Panel C. Average root mean squared prediction error of high frequency benchmarks (54, 43, and 57 months, respectively)

% Effective spread

$1/8 tick size 0.0364 0.0287 0.0405 0.0413 0.0356 0.0298 0.0331 0.0303 0.0435 0.0314 0.0249 9.0838 0.0359 0.0359 0.0893 0.0468 0.2419

$1/16 tick size 0.0243 0.0250 0.0261 0.0263 0.0247 0.0263 0.0336 0.0309 0.0513 0.0294 0.0223 1.8450 0.0338 0.0265 0.0636 0.0301 0.1679

$.01 tick size 0.0246 0.0221 0.0261 0.0265 0.0256 0.0224 0.0288 0.0272 0.0370 0.0265 0.0207 3.2074 0.0272 0.0237 0.0316 0.0257 0.0800

% Quoted spread

$1/8 tick size 0.0467 0.0329 0.0507 0.0519 0.0477 0.0345 0.0362 0.0322 0.0399 0.0253 0.0289 9.0838 0.0434 0.0498 0.0779 0.0474 0.2296

$1/16 tick size 0.0266 0.0235 0.0282 0.0292 0.0281 0.0249 0.0319 0.0286 0.0481 0.0248 0.0198 1.8447 0.0334 0.0286 0.0597 0.0306 0.1629

$.01 tick size 0.0203 0.0160 0.0218 0.0225 0.0215 0.0166 0.0263 0.0248 0.0294 0.0204 0.0159 3.2070 0.0252 0.0204 0.0312 0.0215 0.0807
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Table 7

Low-frequency spread proxies compared to low-frequency percent effective spread and to low-frequency percent quoted spread.

The low-frequency benchmark percent effective spread is the daily average of the percent effective spread based on the last trade price of the day and the closing bid

and ask prices from the CRSP daily stock database for the sample firm-month. The low-frequency benchmark percent quoted spread is the daily average of the

percent quoted spread based on the closing bid and ask prices from the CRSP daily stock database for the sample firm-month. All low-frequency spread proxies are

calculated from CRSP daily stock data for a sample firm-month. The sample spans 1993–2005 inclusive and consists of 400 randomly selected stocks with annual

replacement of stocks that don’t survive, resulting in 62,100 firm-months. Bold numbers are statistically different from zero at the 1% level when N ¼ 62,100 or at the

5% level when N ¼ 156.

New low frequency spread proxies Existing low-frequency spread proxies

Holden

Holden

2

Effective

Tick

Effective

Tick2

Effective

Tick3

Effective

Tick4

Extended

Roll1

Extended

Roll2

No

Trade

Quoted

Spread

Multi-

Factor1

Multi-

Factor2

Pastor

and

Stambaugh Roll

Has-

brouck

Gibbs

LOT

Mixed

LOT

Y-split Zeros

Panel A. Joint time-series cross-sectional correlations with low-frequency benchmarks based on individual firms (N ¼ 62,100 stock-months)

Low-freq. % eff. spread 0.318 0.542 0.297 0.261 0.357 0.536 0.363 0.372 0.468 0.428 0.491 �0.084 0.235 0.371 0.296 0.390 0.519

Low-freq. % quo. spread 0.717 0.876 0.669 0.658 0.763 0.863 0.648 0.689 0.636 0.744 0.841 �0.103 0.604 0.714 0.624 0.703 0.505

Panel B. Pure time-series correlations with low-frequency benchmarks based on an equallyweighted portfolio (N ¼ 156 portfolio-months)

Low-freq. % eff. spread 0.907 0.928 0.904 0.898 0.899 0.932 0.870 0.874 0.935 0.910 0.919 �0.296 0.829 0.812 0.701 0.884 0.883

Low-freq. % quo. spread 0.984 0.988 0.983 0.982 0.976 0.989 0.938 0.949 0.945 0.982 0.985 �0.323 0.898 0.895 0.763 0.966 0.951

Panel C. Average root mean squared prediction error of low-frequency benchmarks (N ¼ 156 months)

Low-freq. % eff. spread 0.5441 0.5385 0.5448 0.5462 0.5462 0.5383 0.5362 0.5358 0.5372 0.5357 0.5368 3.4012 0.5392 0.5421 0.5349 0.5432 0.4998

Low-freq. % quo. spread 0.0392 0.0284 0.0411 0.0421 0.0401 0.0293 0.0389 0.0360 0.0349 0.0255 0.0285 4.8374 0.0415 0.0416 0.0576 0.0390 0.1540

C
.W

.
H

o
ld

en
/

J
o

u
rn

a
l

o
f

F
in

a
n

cia
l

M
a

rk
ets

1
2

(
2

0
0

9
)

7
7

8
–

8
1

3
8
0
7



ARTICLE IN PRESS

Table 8

Benchmark descriptive statistics.

High-frequency percent effective spread is a volume-weighted average based on every trade and corresponding

BBO quote in the NYSE TAQ database for a sample firm-month. High-frequency percent quoted spread is a time-

weighted average based on every BBO quote in the sample firm-month. Low-frequency percent effective spread is

the daily average of the percent effective spread based on the last trade price of the day and the closing bid and ask

prices from the CRSP daily stock database for the sample firm-month. Low-frequency percent quoted spread is

the daily average of the percent quoted spread based on the closing bid and ask prices from the CRSP daily stock

database for the sample firm-month. The sample spans 1993–2005 inclusive and consists of 400 randomly selected

stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months.

High-frequency

effective spread

High-frequency

quoted spread

Low-frequency

effective spread

Low-frequency

quoted spread

Mean 0.0285 0.0331 0.3079 0.0366

Median 0.0160 0.0177 0.0162 0.0204

Standard deviation 0.0402 0.0463 0.6885 0.0540

Correlations High-frequency

effective spread

High-frequency

quoted spread

Low-frequency

effective spread

Low-frequency

quoted spread

High-frequency effective spread 1.000

High-frequency quoted spread 0.880 1.000

Low-frequency effective spread 0.460 0.536 1.000

Low-frequency quoted spread 0.805 0.893 0.537 1.000

C.W. Holden / Journal of Financial Markets 12 (2009) 778–813808
effective spread are consistent with this interpretation. This suggests that we should not
place much weight on the low-frequency percent effective spread results and should put
much more weight on the low-frequency percent quoted spread results.
To summarize Table 7 focusing on the low-frequency percent quoted spread results,

I find that new proxies consistently outperform existing proxies. In Panel A, the best new
proxy has a joint correlation of 0.876 versus the best existing proxy with 0.714. In Panel B,
the best new proxy has a time-series correlation of 0.989 versus the best existing proxy with
0.966. In Panel C, the best new proxy has an RMSE of 0.0255 versus the best existing
proxy with 0.0390.

5. Conclusion

I develop new spread proxies that are computed from low-frequency (daily) data. First,
I develop an integrated model, the Holden model, which directly includes three attributes
of the daily data: price clustering, serial covariance accounting for no-trade midpoints, and
the no-trade quoted spread. Second, I develop combined models, the Multi-Factor models,
that are linear combinations of simpler one-attribute or two-attribute models. I show
theoretically that Multi-Factor models have the potential to diversify away some
imperfectly-correlated error terms. Next, I empirically test both new and existing low-
frequency spread measures on three performance dimensions: (1) higher individual
firm correlation with effective or quoted spread, (2) higher portfolio correlation with
effective or quoted spread, and (3) lower distance (tracking error) relative to effective or
quoted spread.
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I find that on all three performance dimensions with regard to both high-frequency
benchmarks, the new integrated model Holden2 does significantly better than existing low-
frequency spread proxies. I find that on all three performance dimensions with regard to
both benchmarks, the new combined model Multi-Factor2 does significantly better than
existing low-frequency spread proxies, except for one tie. Summarizing six tests (three
performance dimensions X two benchmarks), the combined model Multi-Factor2 does
significantly better than the integrated model Holden2 on four out of six tests.

I also find that these new proxies are robust by size quintiles, price quintiles, and tick size
regime. Consistently, Holden2 is the best integrated model and Multi-Factor2 is the best
combined model. Across all size, price, and tick size regime comparisons, Multi-Factor2
is the most frequent winner and Holden2 is the second most frequent winner. Finally,
I compare the proxies to low-frequency spread benchmarks and find that new proxies
consistently outperform existing proxies.
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Appendix A. Modifications to accommodate any decimal or fractional price grid

Holden model: Let Aj and AJþj be the total number of trade prices and no-trade
midpoints, respectively, corresponding to the jth spread ðj ¼ 1; 2; . . . ; JÞ. Let Djk be the
number of special price increments for the jth spread ðj ¼ 1; 2; . . . ; JÞ that overlap the price
increments of the kth spread.

The probabilities of the trade price clusters are

PrðCt ¼ jÞ ¼
Xj

k¼1

gkm
Djk

Ak

; j ¼ 1; 2; . . . ; J. (31)

Similarly, the probabilities of the no-trade midpoint clusters are

PrðCt ¼ J þ jÞ ¼
Xj

k¼1

gkð1� mÞ
DJþj;k

AJþk

; j ¼ 1; 2; . . . ; J. (32)

The conditional probability of a half-spread given a particular price cluster is

PrðHt ¼ hkjCt ¼ jÞ ¼

gjkj
m
2

� 	Djjkj

Ajkj

PrðCt ¼ jÞ
; ka0; k � j and j ¼ 1; 2; . . . ; J (33)

and

PrðHt ¼ h0jCt ¼Þj ¼ 0; j ¼ 1; 2; . . . ; J. (34)

Similarly, the conditional probability of a half-spread given a particular midpoint cluster is

PrðHt ¼ h0jCt ¼ J þ jÞ ¼ 1; j ¼ 1; 2; . . . ; J (35)
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and

PrðHt ¼ hkjCt ¼ J þ jÞ ¼ 0; ka0; k � j and j ¼ 1; 2; . . . ; J. (36)

Effective Tick: Let Bj and BJþj be the number of special prices and special midpoints,
respectively, corresponding to the jth spread ðj ¼ 1; 2; . . . ; JÞ. The unconstrained
probability of the jth spread is

Uj ¼

A1

B1

� �
F1 þ

AJþ1

BJþ1

� �
FJþ1; j ¼ 1;

Aj

Bj

� �
F j �

Pj�1
k¼1

Ojk

Bk

� �
Fk þ

AJþj

BJþj

� �
F Jþj �

Pj�1
k¼1

OJþj;k

BJþk

� �
FJþk; j ¼ 2; 3; . . . ; J:

8>>><
>>>:

(37)

Detailed decimal and fractional examples are available at: www.kelley.iu.edu/cholden/
examples.pdf.
Appendix B. Price cluster probabilities and half-spread conditional probabilities

The probability of a trade price cluster is obtained by summing the probabilities of all
paths in Fig. 2 tree that lead to a particular cluster. The probabilities of the trade price
clusters are

PrðCt ¼ jÞ ¼

Pj

k¼1

gkm
1
2


 �j�kþ1
; j ¼ 1; 2; . . . ; J � 1;

PJ
k¼1

gkm
1
2


 �j�k
; j ¼ J :

8>>>><
>>>>:

(38)

Similarly, the probabilities of the no-trade midpoint clusters are

PrðCt ¼ J þ jÞ ¼ gjð1� mÞ; j ¼ 1; 2; . . . ; J. (39)

Let hj j ¼ �J;�J þ 1; . . . ;þJ be the feasible half-spread values.17 The conditional
probability of a half-spread given a particular price cluster is obtained by starting at a
particular price cluster and determining the probability of each feasible half-spread from
that cluster. The conditional probability of a half-spread given a particular price cluster is

PrðHt ¼ hkjCt ¼ jÞ ¼

gjkj
m
2

� 	 1

2

� �j�kþ1

PrðCt ¼ jÞ
when ka0 and j ¼ 1; 2; . . . ; J � 1;

gjkj
m
2

� 	 1

2

� �j�k

PrðCt ¼ jÞ
when ka0 and j ¼ J;

8>>>>>>>><
>>>>>>>>:

(40)
17More specifically, when Qt ¼ þ1, then the possible half-spreads h1; h2; . . . ; hJ are given by hj ¼
1
2
sj . When

Qt ¼ 0, then the only possible half-spread is h0 ¼ 0. When Qt ¼ �1, then the possible half-spreads

h�1; h�2; . . . ; h�J are given by h�j ¼
�1
2

sj .

http://www.kelley.iu.edu/cholden/examples.pdf
http://www.kelley.iu.edu/cholden/examples.pdf
http://www.kelley.iu.edu/cholden/examples.pdf
http://www.kelley.iu.edu/cholden/examples.pdf
http://www.kelley.iu.edu/cholden/examples.pdf
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and

PrðHt ¼ h0jCt ¼ jÞ ¼ 0; j ¼ 1; 2; . . . ; J. (41)

Similarly, the conditional probability of a half-spread given a particular midpoint
cluster is

PrðHt ¼ h0jCt ¼ J þ jÞ ¼ 1; j ¼ 1; 2; . . . ; J (42)

and

PrðHt ¼ hkjCt ¼ J þ jÞ ¼ 0 ka0 and j ¼ 1; 2; . . . ; J. (43)
Appendix C. Existing low-frequency spread proxies

All dollar spread proxies below are converted to percent spread proxies by dividing by
the average price P̄ (see Table C1).
Table C1

Reference Proxy

Hasbrouck (2004) Hasbrouck Gibbs ¼ 2c, where the half-spread c, the variance of the public information

shock s2� , the latent buy/sell/no-trade indicators Q ¼ fQ1;Q2; . . . ;QT g, and the latent

‘‘efficient prices’’ V ¼ fV1;V2; . . . ;VT g are estimated numerically using a Gibbs sampler.

Lesmond et al. (1999) LOT Mixed ¼ a2 � a1; where a2ða1Þ is trans cost to buy ðsellÞ:

Max
a1 ;a2 ;b;s

Q
1

1

s
n

Rt þ a1 � bRmt

s

� 




Q
0

N
a2 � bRmt

s

� �
�N

a1 � bRmt

s

� �� 




Q
2

1

s
n

Rt þ a2 � bRmt

s

� 

;

8>>>>>>>><
>>>>>>>>:

where Rt (Rmt) is the own return (market return), s is the return volatility, and b is the

stock’s market sensitivity,

S:T : a1 � 0; a2 � 0; b � 0; s � 0: LOT Mixed is capped at a max value of 1:5:
Region 0 is Rjt ¼ 0, region 1 is Rjta0 and Rmt40, and region 2 is Rjta0 and Rmto0.

Goyenko et al. (2008) LOT Y -split ¼ a2 � a1 and everything is the same as LOT Mixed, except region 0 is

Rjt ¼ 0, region 1 is Rjt40, and region 2 is Rjto0 and no upper bound cap is imposed.

Pastor and Stambaugh

(2003)

Pastor and Stambaugh ¼ G, from the regression:

re
tþ1 ¼ yþ frt þ G signðre

t ÞðVolumetÞ þ �t, where re
t is the stock’s excess return above the

CRSP VWMR on day t, y is the intercept, f and G are regression coefficients, and �t is
the error term.

Roll (1984)
Roll ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CovðDPt;DPt�1Þ

p
=P̄ When CovðDPt;DPt�1Þo0;

0 When CovðDPt;DPt�1Þ � 0:

(

Lesmond et al. (1999)
Zeros ¼

ZRD

TDþNTD
;

where ZRD is the number of zero returns days, TD the number of trading days, and NTD

the number of no-trade days in a given stock-month.
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