
Online Appendix: “When good balance goes bad: A discussion of common pitfalls when using 
entropy balancing” 

 
Appendix: Comparing Entropy Balancing (EB), Propensity Score Matching (PSM), and 
Ordinary Least Squares (OLS) Regression 
 
1. Overview 
The goal of this appendix is to use a simulated dataset with a handful of variables to illustrate 
how three common analysis tools weight observations to construct a counterfactual. In doing so, 
this appendix builds on illustrations by Hainmueller (2012) and McMullin and Schonberger 
(2020) designed to illustrate how entropy balancing assigns observational weights to eliminate 
covariate imbalance across a treatment and control sample of interest. 
 
We begin by generating data containing a treatment indicator t, a single covariate X, and an 
outcome variable Y. Using this simulated dataset, we use three analysis approaches to identify a 
control sample used to estimate a treatment effect. These approaches are:  
 
Analysis Approach Data Preprocessing Approach Estimation Approach 
OLS None (ordinary least squares) Regression (equal weighted 

over full sample) 
PSM and OLS Estimate propensity scores and match 

treatment and control sample 
observations on propensity scores 
without replacement to produce a 
matched sample 

Regression (equal weighted 
over propensity score 
matched samples) 

Entropy Balancing 
and Weighted OLS 

Entropy balancing to identify weights 
for each observation in the control 
sample such that the weighted control 
sample and treated sample have similar 
covariate distributions 

Regression (equal weights 
for treated sample and 
entropy balancing weights 
for control sample over full 
sample) 

 
These three approaches typify research designs accounting researchers commonly use. In the 
interest of brevity, we do not examine related matching approaches in the simulation (e.g., 
coarsened exact matching [CEM]), as Morgan and Winship (2015) document that PSM 
outperforms a number of other matching approaches.  
 
We provide Stata code in blocks of yellow and Stata output and figures in blocks of blue. 
 
2. Update Stata, Install Packages, and Create Data 
 
We first update Stata and install the entropy balancing package.  
  



 
*------------------------------------------------------------------------------* 
* Update and Install software 
*------------------------------------------------------------------------------* 
update all 
ssc install ebalance, replace all 
ssc install psmatch2, replace all 
 

We next create 150 observations (50 treated and 100 control, denoted by a treatment indicator t) 
with one covariate X, constructed as a uniform random variable over the interval (0, 10) for the 
control sample (with t = 0) and over the interval (5, 10) for the treatment sample (with t = 1). As 
a result of this definition of X over a smaller interval for the treatment sample, treatment and 
control samples will display covariate imbalance. We also generate an outcome variable Y which 
is a function of the X covariate value as well as the treatment indicator t. This code also 
visualizes the data via a scatter plot of Y and X grouped by treatment status.  
 
 
*------------------------------------------------------------------------------* 
* Create data to analyze 
*------------------------------------------------------------------------------* 
*---> Set seed and initialize dataset 
clear 
set seed 123456 
set obs 150 
gen t = 1 if _n <= 50 
replace t = 0 if t == . 
 
*---> generate a covariate where there are control observations with  
* covariate values where no treatment observations exist 
gen X = runiform(0,10) if t == 0 
replace X = runiform(5,10) if t == 1 
 
*---> generate a dependent variable that is a function of X and t: 
*  A treatment effect of 1 
*  A nonlinear relation between Y and X for control observations. 
gen Y = .5 + .5*X + 1*t + rnormal(0,0.25)  
replace Y = 3 + rnormal(0,0.25)  if X < 5 
 
*---> plot the data to view what we've created 
graph twoway (scatter Y X if t==0, leg(label(1 "control")) mcolor(black)) (scatter Y 
X if t==1, leg(label(2 "treated")) mcolor(red) mfc(none)) 
 
*--->  Graph covariate imbalance across treated and control 
graph box X, over(t) 
byhist X, by(t) bin(6) tw1(color(red)) tw2(color(blue)) density  

 



 
 
Using this code, we also plot a histogram of X separately by treatment status to depict covariate 
imbalance across the treated and control samples: 
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3. Analysis Approaches 
In this section we employ three common research designs to the simulated data to assess how 
each method weights observations in constructing an estimate of the treatment effect.  
 
3.1. OLS Regression Only 

By far, the most common approach accounting researchers to adjust for covariates is a 
multiple regression. In this approach, researchers estimate an ordinary least squares (OLS) 
regression over all available observations without missing data for the variables in their model. 
This approach treats all observations with an equal weight.  
 
 
*------------------------------------------------------------------------------* 
* Approach 1 – Regression only 
*------------------------------------------------------------------------------* 
*---> Estimate Regression 
. regress Y t X 
 

 
This produces the following output:  
 
 
      Source |       SS           df       MS      Number of obs   =       150 
-------------+----------------------------------   F(2, 147)       =    338.88 
       Model |  146.342981         2  73.1714905   Prob > F        =    0.0000 
    Residual |   31.740546       147  .215922082   R-squared       =    0.8218 
-------------+----------------------------------   Adj R-squared   =    0.8193 
       Total |  178.083527       149  1.19519146   Root MSE        =    .46467 
 
------------------------------------------------------------------------------ 
           Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           t |   .8165832   .0866383     9.43   0.000     .6453657    .9878007 
           X |   .2897373   .0152053    19.05   0.000      .259688    .3197865 
       _cons |   2.163907   .0909312    23.80   0.000     1.984206    2.343608 
------------------------------------------------------------------------------ 

 
We see that the imbalance and nonlinearity result in a downward bias for the estimated 
coefficient on the treatment indicator t (0.817 coefficient vs 1.000 for an unbiased estimate) and 
on X (0.290 coefficient vs 0.500 for an unbiased estimate). This bias in both estimates derives 
from the assumption of a constant linear treatment effect across all observations in the sample, 
resulting in excess weight applied to control sample observations where X < 5 and the treatment 
effect is zero. 
 
3.2. PSM and Regression 

Accounting researchers’ efforts to achieve covariate balance between treatment and control 
samples have emphasized propensity score matching (e.g., Rosenbaum and Rubin 1983; 
Armstrong, Jagolinzer, and Larcker 2010; Lawrence, Minutti-Meza, and Zhang 2011).1 In this 

 
1 Accounting researchers also employ alternative matching methods, including matching treated observations to 
control observations on a small subset of covariates using nearest neighbor matching within a pre-specified group 
such as industry (e.g., Kothari, Leone, and Wasley 2005), using coarsened exact matching to facilitate matching on 
several covariates (e.g., DeFond, Erkens, and Zhang 2017), or matching on a distance metric such as the generalized 
Mahalanobis distance (e.g., Diamond and Sekhon 2005).  



approach, researchers estimate a propensity score model where the dependent variable is the 
treatment indicator and the independent variables are a set of covariates, compute propensity 
scores (p-scores) as the fitted values from this model, and then match treated observations to 
control observations with similar p-scores. With these subsamples identified, researchers 
estimate a regression over all matched observations. This approach results in unmatched 
observations receiving a zero weight and matched observations typically receiving a positive, 
integer weight. When matching is done without replacement, this weight will be one.  
 
 
*------------------------------------------------------------------------------* 
*  Approach 2 – PSM - Caliper distance with replacement 
*------------------------------------------------------------------------------* 
*---> estimate Pscore 
psmatch2 t X, norepl descending caliper(0.03) logit  
 
*---> Examine ‘_weight’; weight variable created by psmatch2  
tab _weight t 
 

 
This code produces the following output:  
 
First, it returns the estimated propensity score model. Fitted values from this model (p-scores) 
are used to construct a distance metric between observations (i.e., differences in p-scores). 
Matching typically proceeds by identifying a control sample observation for each treatment 
sample observation where the distance metric is the smallest and less than some threshold, often 
referred to as a caliper.  
 
Logistic regression                             Number of obs     =        150 
                                                LR chi2(1)        =      22.67 
                                                Prob > chi2       =     0.0000 
Log likelihood = -84.140984                     Pseudo R2         =     0.1187 
 
------------------------------------------------------------------------------ 
           t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           X |   .3517719   .0827706     4.25   0.000     .1895445    .5139992 
       _cons |   -2.89988   .5829605    -4.97   0.000    -4.042462   -1.757299 
------------------------------------------------------------------------------ 

 
Next, this code describes the resulting weights _weight from matching without replacement 
after sorting the data in descending order, and requiring a maximum difference between 
propensity scores of 0.03. Only 46 of the 50 treatment observations are matched via this process. 
This matched control sample is used as the counterfactual.  
 
 psmatch2: | 
 weight of | 
   matched |           t 
  controls |         0          1 |     Total 
-----------+----------------------+---------- 
         1 |        46         46 |        92  
-----------+----------------------+---------- 
     Total |        46         46 |        92 

 
Next we plot the data in these two samples. 
 



 
*---> SCATTER PLOT 
*plot scatter plot of matched  
graph twoway  (scatter Y X if t==0 & _weight<., leg(label(1 "P-score Matched")) 
mcolor(black%30) xlabel(0(1)10) ylabel(2(1)7)) (scatter Y X if t==1 & _weight<., 
leg(label(2 "Treated")) mcolor(red) mfc(none)) 
 

 
Examining the scatter plot of Y and X of the matched observations, we can see the procedure 
discarded all control observations with values of X less than approximately 5, consistent with a 
valid match between treatment and control observations based on the single covariate.   
 

 
 
We next estimate the regression after performing propensity score matching without replacement 
by only including those observations with a non-missing weight in the estimation. 
 
 
*---> Estimate Regression 
regress Y t X if _weight != . 
 

 
This produces the following output:  
 
 
      Source |       SS           df       MS      Number of obs   =        92 
-------------+----------------------------------   F(2, 89)        =    466.92 
       Model |  80.6372937         2  40.3186468   Prob > F        =    0.0000 
    Residual |  7.68517487        89  .086350279   R-squared       =    0.9130 
-------------+----------------------------------   Adj R-squared   =    0.9110 
       Total |  88.3224685        91  .970576577   Root MSE        =    .29385 
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------------------------------------------------------------------------------ 
           Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           t |   .9634928   .0613409    15.71   0.000     .8416098    1.085376 
           X |   .5089889   .0200039    25.44   0.000     .4692415    .5487362 
       _cons |   .4322711   .1499198     2.88   0.005     .1343837    .7301584 
------------------------------------------------------------------------------ 

 
This analysis demonstrates that using propensity score matching to identify a matched sample 
eliminates bias in the regression estimate of the coefficients on t (0.963 vs 1.000 for an unbiased 
estimate) and on X (0.509 vs 0.500 for an unbiased estimate).  
 
3.3. Entropy Balancing and Weighted Regression 
While propensity score matching typically improves covariate balance, a more recently 
developed method of reweighting control sample observations, entropy balancing (Hainmueller 
2012), virtually eliminates covariate imbalance with a simple, one-line Stata command. 
McMullin and Schonberger (2020) apply entropy balancing in the setting of estimating abnormal 
accruals to provide a detailed discussion of the advantages of entropy balancing in addressing 
non-linear relations with underlying covariates in order to eliminate (or at least reduce) bias in 
estimated treatment effects. Further, the authors describe several limitations of entropy balancing 
in empirical-archival research settings with features that are common in accounting research. We 
build on their discussion in the following illustration.  

 
The first step in performing entropy balancing is to run the ebal command. This iterative 
algorithim creates a new variable _webal, which when used to weight the control sample 
results in near perfect covariate balance. The option target(3) sets the balance conditions 
required to be met for the algorithm to cease adjusting the control sample weights, which in this 
case requires the first three moments of the X covariate distribution to be the same (within a 
default tolerance) across the treated and weighted control sample.  
 
 
*------------------------------------------------------------------------------* 
* Approach 3 - Entropy Balancing and Weighted Regression 
*------------------------------------------------------------------------------* 
*--->run ebalance 
ebalance t X, target(3) 
 

 
This command produces the following output:  
 
 
Data Setup 
Treatment variable:   t 
Covariate adjustment: X (1st order). X (2nd order). X (3rd order). 
 
 
Optimizing... 
Iteration 1: Max Difference = 6186.94578 
Iteration 2: Max Difference = 2276.21682 
Iteration 3: Max Difference = 837.550557 
Iteration 4: Max Difference = 308.317911 
Iteration 5: Max Difference = 113.657737 
Iteration 6: Max Difference = 42.0557396 
Iteration 7: Max Difference = 15.8045807 
Iteration 8: Max Difference = 6.60675262 



Iteration 9: Max Difference = 3.50860125 
Iteration 10: Max Difference = 1.94948744 
Iteration 11: Max Difference = .790783647 
Iteration 12: Max Difference = .196287767 
Iteration 13: Max Difference = .016841045 
Iteration 14: Max Difference = .000139034 
maximum difference smaller than the tolerance level; convergence achieved 
 
 
Treated units: 50      total of weights: 50 
Control units: 100     total of weights: 50 
 
 
Before: without weighting 
 
             |              Treat              |             Control              
             |      mean   variance   skewness |      mean   variance   skewness  
-------------+---------------------------------+--------------------------------- 
           X |      7.25      2.243      .1802 |      5.14      8.323     .02468  
 
 
After:  _webal as the weighting variable 
 
             |              Treat              |             Control              
             |      mean   variance   skewness |      mean   variance   skewness  
-------------+---------------------------------+--------------------------------- 
           X |      7.25      2.243      .1802 |      7.25      2.243      .1802  
 

 
The first panel provides summary statistics that allow us to assess pre-adjustment covariate 
balance.  The second panel shows the summary statistics after weighting the control sample 
using weights identified by the entropy balancing algorithm. While covariate balance was 
achieved, we next examine the weights created to achieve the balance.  
 
 
*---> Analysis examining entropy balancing weights  
. tabstat _webal, statistics(mean, max, N) by(t) 
. gsort - t _webal 
. list _webal if inrange(_n, 1, 10) & t == 0 | inrange(_n, _N-10+1, _N) 
 

 
This produces the following output:  
 
 
Summary for variables: _webal 
     by categories of: t  
 
       t |      mean       min       max         N 
---------+---------------------------------------- 
       0 |        .5  1.27e-18  1.562386       100 
       1 |         1         1         1        50 
---------+---------------------------------------- 
   Total |  .6666667  1.27e-18  1.562386       150 
-------------------------------------------------- 
 

 
From this output we can see that the entropy balancing algorithm retains all 100 control and all 
50 treatment observations. This output also shows that the treatment sample observations retain a 



weight of one and that continuous weights assigned to control sample observations range from 
nearly zero (1.27e-18) to 1.56.  
 
 
     +-----------+ 
     |    _webal | 
     |-----------| 
141. | 1.3520483 | 
142. | 1.4549744 | 
143. | 1.4727891 | 
144. | 1.4858081 | 
145. | 1.5137473 | 
     |-----------| 
146. | 1.5182191 | 
147. | 1.5204759 | 
148. | 1.5512371 | 
149. | 1.5558077 | 
150. | 1.5623861 | 
     +-----------+ 
 

 
This list of the top 10 weights shows that no single observation was assigned an excessively high 
weight. 
 
Given that we only have one covariate in this simulated example, we can compare the weight 
assigned to each observation and its value of X to understand how the weights are iteratively 
adjusted. To do this we use the following code create a scatter plot of _webal and X after each 
of the 14 iterations required to achieve covariate balance within the default tolerance of 0.015.  
 
 
*---> Plot covariate X and entropy balance created variable ‘_webal’ 
graph twoway (scatter _webal X if t==0, leg(label(1 "Entropy Balanced")) 
mcolor(blue) mfc(none) mlw(vthin) ysc(r(0 1.6)) ylabel(0(.2)1.6, angle(0) grid) ) 
(scatter _webal X if t==1, leg(label(2 "Treated")) mcolor(red) mfc(none))  
 

 
  



These plots show the entropy balancing weights after N iterations.2 

 
N Iterations = 1 (no adjustment) N Iterations = 4 

  
N Iterations = 7 N Iterations = 10 

  
N Iterations = 12 N Iterations = 14 (default tolerance met) 

  

 
2 We achieve this series of plots by stopping ebalance from iterating by increasing the tolerance. (E.g., setting 
tolerance to 7000 (i.e., adding the option tol(7000)) results in no adjustment, setting it to 5000 results in 2 
iterations of adjusting the weights, 2000 results in 3 iterations, etc.) This tolerance corresponds to the Max 
Difference parameter reported with each iteration. See the accompanying Stata do file for the remaining tolerances 
we specify to stop the algorithm after each of the N iterations.  
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We direct the reader interested in the theoretical underpinning of this entropy optimization 
algorithm to Kapur and Kesavan (1992) or Mattos and Veiga (2004). Hainmuller (2012) provides 
these references for more detail on the iterative algorithm he employs in this technique.  
 
Examining these plots, we see the iterative algorithm decreased weights assigned to observations 
with an X value less than 4 to be nearly zero. The remainder of the weights were assigned 
following a continuous function that spans the range of X values in the treatment sample. 
 
To visualize the weights assigned by entropy balancing after the final iteration, we construct the 
scatter plot of the covariates Y and X for all observations in the sample, weighted by _webal. 
 
 
*---> SCATTER PLOT 
* Ensure Stata produces consistent sized dots based on weights across both groups 
* See https://www.stata.com/statalist/archive/2008-08/msg00987.html 
expand 2 
replace X = . if _n>(_N/2) 
recode t (1=0) (0=1) if X==. 
 
*plot scatter plot of Y and X based on entropy balancing weights (_webal) 
graph twoway (scatter Y X if t==0 [aw=_webal], leg(label(1 "Entropy Balanced")) 
mcolor(blue) mfc(none) mlw(vthin) msize(*.25)) (scatter Y X if t==1 [aw=_webal], 
leg(label(2 "Treated")) mcolor(red) mfc(none) msize(*.25)) 
 

 
This generates the following plot: 

 
 



We see that all observations are retained after entropy balancing. This approach also down-
weighted control observations where there was no overlap with treatment sample (i.e., X values 
below 5), assigning a weight of effectively zero to observations with X values below 4. 
 
The estimation of the regression after executing the entropy balancing procedure is done using 
the pweight option and the _webal variable.  
 
 
*---> Estimate Regression 
. regress Y t X [pweight=_webal] 
 

 
This produces the following output:  
 
 
(sum of wgt is   1.0000e+02) 
 
Linear regression                               Number of obs     =        150 
                                                F(2, 147)         =     456.37 
                                                Prob > F          =     0.0000 
                                                R-squared         =     0.9099 
                                                Root MSE          =     .28543 
 
------------------------------------------------------------------------------ 
             |               Robust 
           Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           t |   .9686133   .0574659    16.86   0.000     .8550472    1.082179 
           X |   .5085347   .0188487    26.98   0.000     .4712853    .5457841 
       _cons |   .4256848   .1463198     2.91   0.004     .1365227    .7148468 
------------------------------------------------------------------------------  
 
 

Similar to the PSM approach, this demonstrates that entropy balancing is effective in eliminating 
bias in the estimation of the coefficients on t (0.967 vs. 1.000 for an unbiased estimate) and on X 
(0.509 vs. 0.500 for an unbiased estimate). While these estimates retain all observations in the 
dataset, the impact of those control observations that are not similar to the treated observations is 
effectively zero. This implies that the counterfactual is constructed by weighting the observations 
in the control samples using the entropy balance weights and that this counterfactual is similar to 
the treated sample. 
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