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1 Introduction

The theory of search has become a toolkit for the understanding of the role of informational

imperfections in generating observed market inefficiencies. Burdett and Judd’s (1983) model of

nonsequential search is one of the seminal contributions. Burdett and Judd show that price dis-

persion can arise as an equilibrium phenomenon in environments where firms and consumers are

rational and identical. Burdett and Judd’s model of nonsequential search has seen a number of

important extensions, including McAfee’s (1995) study of multiproduct firms, Fershtman and Fish-

man’s (1992) study of price dynamics, Acemoglu and Shimer’s (2000) study of a general equilibrium

labour market, and Janssen and Moraga-González’s (2004) study of oligopolistic pricing. In labor

economics, Burdett and Mortensen’s (1998) model has become a canonical framework for explaining

wage dispersion and turnover.

This paper generalizes the nonsequential search model studied in Burdett and Judd (1983) to

the case in which consumers have heterogeneous search costs. Even though the existence and char-

acterization of price dispersed equilibria has not yet been shown, this extension has been used in the

empirical literature as the workhorse model for structurally estimating search costs in homogenous

product markets. By exploiting the equilibrium conditions of the search model, Hong and Shum

(2006) were the first to show that search costs can be recovered from price data only. Subsequent

empirical work extended the methodology by improving the estimation method (Moraga-González

and Wildenbeest, 2008; Miessi Sanches, Silva Junior, and Srisuma, 2015), and showed how ver-

tical product differentiation (Wildenbeest, 2011), data from different markets (Moraga-González,

Sándor, and Wildenbeest, 2013), forward looking consumers (Blevins and Senney, 2016), search

data (De los Santos, 2012), and quantity data (Zhang, Chan, and Xie, 2015) can be incorporated

into the framework. Moreover, the methodology has been applied in many different settings, in-

cluding grocery stores (Richards, Hamilton, and Allender, 2016; González and Miles, 2015) and

gasoline markets (Nishida and Remer, 2015).
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This paper contributes to this literature by demonstrating that optimal firm and consumer

behavior can be integrated in such a way that the market equilibrium can be described by an

N -dimensional nonlinear system of equations. This is useful for two reasons. First, it provides

us with a simple way to simulate the market equilibrium and, second, it enables us to address

the existence of equilibrium issue using a fixed point argument. Our main theorem shows that an

equilibrium always exists for arbitrary search cost distributions with strictly increasing cumulative

distribution function (CDF). Regarding the uniqueness of a symmetric Nash equilibrium in mixed

strategies, in contrast to the models of Burdett and Judd (1983) and Janssen and Moraga-González

(2004), we believe that consumer search cost heterogeneity results in a unique equilibrium when

the search cost density is not too decreasing. In fact, we are able to show that there exists only

one symmetric equilibrium when N = 2 and search costs follow a power distribution, no matter

whether the density is increasing or decreasing. Though this result proves very difficult to extend

to markets with an arbitrary number of firms, or with different search costs distributions, our proof

suggests that uniqueness should also obtain with densities that are not too decreasing.

The paper also studies how the number of firms affects equilibrium pricing as well as consumer

and total surplus. Though exceptions exist, the standard view in Industrial Organization is that

more firms will result in an increase in consumer surplus. For example, in Cournot models with

homogeneous products, Seade (1980) shows that output, and hence consumer surplus, typically

increases with entry. With price competition, Salop’s (1979) well-known model of localized com-

petition with differentiated products shows that price and consumer surplus increases with the

number of competitors. More general models of price competition such as Perloff and Salop (1985)

and Chen and Riordan (2008) show that even if price increases after entry, consumer gains from

greater product variety will typically dominate so that consumers surplus will increase.

What is common to these models is that all the products and the prices of the firms are

perfectly visible for consumers. In more realistic settings, consumers have to search for prices.
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Stahl (1989) demonstrates that entry may weaken competition in sequential search models for

homogeneous products. A similar result obtains in the nonsequential search model of Janssen and

Moraga-González (2004). With differentiated products, Anderson and Renault (1999) show that an

increase in the number of competitors lowers price and increases consumer surplus. More recently,

Chen and Zhang (2016) demonstrate that entry may result in lower consumer surplus once we allow

for firm asymmetries.

Our main addition to this literature is to show that whether entry strengthens or weakens

competition depends on how dispersed search costs are. As far as we know, this observation has

not been made before. In fact, when consumers have similar search costs, in our model with

search cost heterogeneity mean prices fall and consumer surplus increases in the number of firms.

By contrast, if search costs are relatively dispersed across the consumer population, mean prices

increase in N and consumer surplus decreases in N provided that N is initially sufficiently high.

The crucial distinction between the two cases is that with very little heterogeneity, firms have to

keep their prices appealing for all consumers as the number of firms goes up. In contrast, with a

lot of heterogeneity consumers differ substantially in their search intensities and those who conduct

an exhaustive search in the market become disproportionately less attractive for a firm as more

competitors are around. As a result, firms focus more on the higher search cost consumers and

raise prices on average.1

Our finding that prices may increase or decrease depending on how dispersed search costs are,

reveals that allowing for search cost heterogeneity is important when trying to explain empirical

results from markets in which search frictions are deemed significant and many sellers are active.

For instance, Baye, Morgan, and Scholten (2004) find a negative relationship between average

price and the number of competing firms for consumer electronics products on a price comparison

site, and Barron, Taylor, and Umbeck (2004) find a modest but significant negative effect of the

1The latter result is in line with Chen and Zhang (2016) and suggests a similarity between their model with a
single price and product differentiation and our model with a single product and price differentiation.
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number of sellers on average prices in the gasoline market.2 While these empirical findings are

inconsistent with simpler theoretical search models such as Varian (1980), Janssen and Moraga-

González (2004), and Stahl (1989), they can be rationalized by our model as long as search costs

are not very dispersed.

The structure of this paper is as follows. In the next section, we present the nonsequential

consumer search model studied here and discuss existence and uniqueness of a price dispersed

symmetric equilibrium. In Section 3 we present simulation results illustrating the effects of an

increase in the number of firms. We conclude in Section 4. All the proofs are placed in the

Appendix to ease the reading.

2 The model

We examine an oligopolistic version of Burdett and Judd (1983) with consumer search cost hetero-

geneity. A total of N firms produce a good at unit cost r. There is a unit mass of buyers. Each

consumer inelastically demands one unit of the good and is willing to pay for the good a maximum

of v. Consumers search for prices nonsequentially and buy from the cheapest store in their sample.

Obtaining price quotations, including the first, is costly. Search costs differ across consumers. A

buyer’s search cost is drawn independently from a common atomless distribution G(c) with support

(0,∞) and positive density g(c) everywhere. A consumer with search cost c sampling k firms incurs

a total search cost kc.

Firms and buyers play a simultaneous moves game. An individual firm chooses its price taking

rivals’ prices as well as consumers’ search behavior as given. A firm i’s strategy is denoted by a

distribution of prices Fi(p). Let F−i(p) denote the vector of prices charged by firms other than i. The

(expected) profit to firm i from charging price pi given rivals’ strategies is denoted Π(pi, F−i(p)).

Likewise, an individual buyer takes as given firm pricing and decides on his/her optimal search

2Other studies that find a negative relation between average price and the number of sellers are Haynes and
Thompson (2008) for digital cameras that appear on a price comparison site and Lewis (2008) and Lach and Moraga-
González (2009) for gasoline markets.
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strategy to maximize his/her expected utility. The strategy of a consumer with search cost c is

then a number k of prices to sample. Let the fraction of consumers sampling k firms be denoted by

µk. We shall concentrate on symmetric Nash equilibria. A symmetric equilibrium is a distribution

of prices F (p) and a collection {µ0, µ1, . . . , µN} such that (a) Πi(p, F−i(p)) is equal to a constant

Π for all p in the support of F (p), ∀i; (b) Πi(p, F−i(p)) ≤ Π for all p, ∀i; (c) a consumer sampling

k firms obtains no lower utility than by sampling any other number of firms; and (d)
∑N

k=0 µk = 1.

Let us denote the equilibrium density of prices by f(p), with maximum price p and minimum price

p.

Next we present our results on existence and uniqueness of symmetric equilibrium in mixed

strategies. Before stating our main theorem, we re-state some of the results in Burdett and Judd

(1983) in Propositions 1-4. Since these propositions are minor modifications of results in Burdett

and Judd we do not present formal proofs. We only claim novelty of Propositions 5 and 6 and

Theorem 1.

We start by indicating that, for an equilibrium to exist, there must be some consumers who

search just once and others who search more than once.

Proposition 1 If a symmetric equilibrium exists, then 1 > µ1 > 0 and µk > 0 for some k =

2, 3, . . . , N .

The intuition behind this result is simple. Suppose all consumers did search at least twice;

then all firms would be subject to price comparisons with rival firms so firm pricing would be

competitive. This however is contradictory because then consumers would not be willing to search

that much in the first place. Suppose now that no consumer did compare prices; then firms would

charge the monopoly price. This is also contradictory because in that case consumers would not

be willing to search at all.3

3In the original model of Burdett and Judd (1983) there always exists an equilibrium where all firms charge the
monopoly price. This is because it is assumed that consumers have a reservation price p∗ at which consumer surplus
is big enough to cover the search cost.
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We next observe that, given consumer behavior, for an equilibrium to exist it must be the case

that firm pricing is characterized by mixed strategies.

Proposition 2 If a symmetric equilibrium exists, F (p) must be atomless with upper bound equal

to v.

That dispersion must arise is easily understood. If a particular price is chosen with strictly

positive probability then a deviant can gain by undercutting such a price. This competition for the

price-comparing consumers cannot drive the price down zero since then a deviant would prefer to

raise its price and sell to the consumers who do not compare prices.

We now turn to consumers’ search behavior. Expenditure minimization requires a consumer

with cost c to continue to draw prices from the price distribution F (p) till the expected gains of

searching one more time fall below her search cost. The expected gains from searching k+ 1 prices

rather than k prices are given by E[min{p1, p2, . . . , pk+1}]−E[min{p1, p2, . . . , pk}], where E denotes

the expectation operator. These gains are strictly positive, decreasing and convergent to zero (see

MacMinn, 1980). As a result, a consumer with search cost c will choose to sample k firms provided

that the following three inequalities hold:

v − E[min{p1, p2, . . . , pk}]− kc > 0;

E[min{p1, p2, . . . , pk−1}]− E[min{p1, p2, . . . , pk}] > c;

E[min{p1, p2, . . . , pk+1}]− E[min{p1, p2, . . . , pk}] < c.

Since the search cost distribution G(c) has support (0,∞) and positive density everywhere, there

exists a consumer indifferent between not searching at all and searching once. Let the search cost

of this consumer be denoted c0. Then

c0 = v − E[p], (1)
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since the expected surplus for a consumer who searches one time is v−E[p]. Consumers for whom

c ≥ c0 obtain negative surplus if they search. As a result, the share of consumers who do not

participate in the market altogether is µ0 =
∫∞
c0
dG(c) > 0. Likewise, let ck be the search cost of

the consumer indifferent between searching k times and searching k + 1 times:

ck = E[min{p1, p2, . . . , pk}]− E[min{p1, p2, . . . , pk+1}], k = 1, 2, . . . , N − 1. (2)

Consumers for whom ck ≤ c ≤ ck−1 search k times. As a result µk =
∫ ck−1

ck
dG(c) > 0, k =

2, 3, . . . , N with cN = 0. The following result summarizes:

Proposition 3 Given any atomless price distribution F (p), optimal consumer search behavior is

characterized as follows: consumers whose search cost c ≤ cN−1 search for N prices, consumers

whose search cost c ∈ [ck, ck−1] search for k prices, k = 1, 2, . . . , N−1, and consumers whose search

cost c ≥ c0 stay out of the market, where ck, k = 0, 1, 2, . . . , N − 1, is given by equations (1) and

(2).

Proposition 3 shows that for any given atomless price distribution optimal consumer search

leads to a unique grouping of consumers.

We now examine the pricing behavior of the firms. Following Burdett and Judd (1983), the

expected profit to firm i from charging price pi when its rivals draw a price from the CDF F (p) is

Πi(pi;F (p)) = (pi − r)

(
N∑
k=1

k

N
µk(1− F (pi))

k−1

)
.

This expression arises because, given consumer search strategies, a firm i charging pi sells to a

consumer who compares k prices whenever the price of the other k − 1 firms is higher than pi,

which happens with probability (1− F (pi))
k−1.

In equilibrium, a firm must be indifferent between charging any price in the support of F (p) and

charging the upper bound p. Thus, any price in the support of F (p) must satisfy Πi(pi;F (p)) =
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Πi(p;F (p)). Since Πi(p;F (p)) is monotonically increasing in p, it must be the case that p = v. As

a result, equilibrium requires

(pi − r)

[
N∑
k=1

kµk(1− F (pi))
k−1

]
= µ1(v − r). (3)

Unfortunately, this equation cannot be solved for F (pi) analytically (except in special cases). How-

ever, one can prove existence of an equilibrium price distribution F (pi). Let us rewrite equation

(3) as follows:
N∑
k=1

kµk(1− F (pi))
k−1 =

µ1(v − r)
(pi − r)

. (4)

Note that the RHS of equation (4) is positive and does not depend on F (pi). By contrast, since

F (pi) must take values on [0, 1], the LHS of equation (4) is a positive-valued function that decreases

in F (pi) monotonically. At F (pi) = 0, the LHS takes on value
∑N

k=1 kµk, while at pi = v it takes on

value µ1. As a result, for every price pi ∈ (p, v), there is a unique solution to equation (4) satisfying

F (pi) ∈ [0, 1]; moreover, the solution F (pi) is monotonically increasing in pi. The following result

summarizes these findings.

Proposition 4 Given consumer search behavior {µk}Nk=0, there exists a unique symmetric equi-

librium price distribution F (p). In equilibrium firms charge prices randomly chosen from the set[
µ1(v−r)∑N
k=1 kµk

+ r, v
]

according to the price distribution defined implicitly by equation (3).

Proposition 4 shows that the equilibrium price distribution is unique for any given grouping

of consumers. For the price distribution in Proposition 4 to be an equilibrium of the game, the

conjectured grouping of consumers has to be the outcome of optimal consumer search. This requires

that the following system of equations holds:

µk =

∫ ck−1

ck

dG(c), for all k = 1, 2, . . . , N − 1; (5)

µN =

∫ cN−1

0
dG(c), (6)
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with µ0 = 1−
∑N

k=1 µk and where c0 and ck, k = 1, 2, . . . , N − 1 are the solutions to

c0 = v − E[p]; (7)

ck = E[min{p1, p2, . . . , pk}]− E[min{p1, p2, . . . , pk+1}], k = 1, 2, . . . , N − 1, (8)

where the expectation operator is taken over the distribution of prices which solves equation (3).

Using the distributions of the order statistics, and after successively integrating by parts, we

can rewrite equations (7) and (8) as follows:

c0 =

v∫
p

F (p)dp; (9)

ck =

v∫
p

F (p)(1− F (p))kdp, k = 1, 2, . . . , N − 1. (10)

F (p) is monotonically increasing in p so we can use equation (3) to find its inverse:

p(z) =
µ1(v − r)∑N

k=1 kµk(1− z)k−1
+ r. (11)

Using this inverse function, integration by parts and the change of variables z = F (p) in equations

(9) and (10) yields:

c0 = v −
∫ 1

0
p(z)dz; (12)

ck =

1∫
0

p(z)[(k + 1)z − 1](1− z)k−1dz, k = 1, 2, . . . , N − 1. (13)

Therefore we can state that:

Proposition 5 If a symmetric equilibrium of the game exists then consumers search according to

Proposition 3, firms set prices according to Proposition 4, and the series of critical cutoff points
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{ck}N−1k=0 is given by the solution to the system of equations:

c0 = (v − r)

(
1−

∫ 1

0

G(c0)−G(c1)∑N
k=1 k[G(ck−1)−G(ck)]uk−1

du

)
; (14)

ck = (v − r)
1∫

0

[G(c0)−G(c1)]
[
kuk−1 − (k + 1)uk

]∑N
k=1 k[G(ck−1)−G(ck)]uk−1

du, k = 1, 2, ..., N − 1. (15)

This result is useful for two reasons. First, it provides a straightforward way to compute and

simulate the market equilibrium. For fixed v, r, and G(c), the system of equations (14)–(15) can

be solved numerically. If a solution exists, then the consumer equilibrium is given by equations

(5)–(6) and the price distribution follows readily from equation (11). Secondly, this result enables

us to address the existence and uniqueness of equilibrium issues, which are the subject of our next

statement.

Theorem 1 For any consumer valuation v and firm marginal cost r such that v > r ≥ 0 and for

any search cost distribution function G(c) with support (0,∞) such that either g(0) > 0 or g(0) = 0

and g′(0) > 0, a symmetric equilibrium exists in a market with an arbitrary number of firms N .

The proof of this result, which is in the Appendix, builds on Brouwer’s fixed point theorem. To

apply the theorem, we first construct an auxiliary mapping and show that a market equilibrium is

given by a fixed point of such a mapping. A difficulty we encounter in applying Brouwer’s fixed point

theorem directly is that the auxiliary mapping happens to be discontinuous at zero. This would

not be a problem if we could bound the domain of definition of the auxiliary mapping. However, it

is not possible to find a bound of the domain of definition that is appropriate for arbitrary search

cost distributions. Because of this, we modify the auxiliary mapping in the neighbourhood of 0

and apply Brouwer’s fixed point theorem to the modified auxiliary mapping.

Proposition 6 When N = 2 and search costs follow a power distribution G(c) = (c/c)a, a > 0,

the symmetric equilibrium is unique.
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This result establishes uniqueness of equilibrium when the market is operated by two firms

and search costs follow a power distribution.4 General results on uniqueness prove to be very

difficult to obtain because we cannot compute the equilibrium explicitly. However, the proof of

this Proposition clearly suggests that uniqueness should hold when the density of search cost is not

too decreasing, but of course this is not necessary as with power functions with parameter a < 1.

Moreover, simulations of the model for different parameters and search cost distributions, some of

which we present below in Section 3, suggest the uniqueness result is more general. This points

towards lack of consumer search cost heterogeneity being the driver of multiplicity in the simpler

models of Burdett and Judd (1983) and Janssen and Moraga-González (2004).5

3 Price equilibrium and the number of firms

In this section we study how an increase in the number of competitors affects pricing and consumer

surplus for different search cost distributions.6 As mentioned in Section 1, though exceptions exist,

the standard view in Industrial Organization is that more firms will result in an increase in consumer

surplus. The price and welfare effects of entry in our model are difficult to derive analytically since

the equilibrium price distribution cannot be obtained in closed form. We therefore proceed by

solving the model numerically.

Consider a market in which consumers’ search costs follow a beta distribution, with parameters

(α, β). Consumers valuations v are identical; we set v = 1.25. The firms’ marginal cost r is set

equal to 0. In what follows, we fix the mean search cost to 0.5 and compare how the market works

for two different levels of search cost dispersion, using the two search cost densities plotted in Figure

1. In particular, we focus on the effects of entry on prices and surplus and study how these effects

depend on the amount of search cost dispersion. Our objective is to study how changes in the

4We note that the existence result of Theorem 1 also holds for bounded support provided that the upper bound
is sufficiently large so that in equilibrium µ0 > 0.

5Notice that these papers have discrete distributions of search costs, which can be interpreted as densities that
increase and decrease extremely rapidly.

6Janssen and Moraga-González (2004) study the effects of entry in a model with a two-point search cost distribution
that includes an atom of shoppers.
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Figure 1: Beta distribution for different parameter values

number of firms lead to changes in prices and welfare taking as given the search cost distribution,

and not to compare price and welfare levels across different search cost distributions.7

Table 1: Equilibrium search intensities for (α, β) = (1.5, 1.5) (mean is 0.5; variance is 0.06)

Search Number of firms N
intensity 2 3 4 5 6 7 8 9 10 11 12 13 14 15

µ0 0.86 0.82 0.80 0.80 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
µ1 0.12 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
µ2 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
µ3 - 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
µ4 - - 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
µ5 - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
µ6 - - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
µ7 - - - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
µ8 - - - - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
µ9 - - - - - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00
µ10 - - - - - - - - 0.00 0.00 0.00 0.00 0.00 0.00
µ11 - - - - - - - - - 0.00 0.00 0.00 0.00 0.00
µ12 - - - - - - - - - - 0.00 0.00 0.00 0.00
µ13 - - - - - - - - - - - 0.00 0.00 0.00
µ14 - - - - - - - - - - - - 0.00 0.00
µ15 - - - - - - - - - - - - - 0.00

Notes: The entries with zeros are not exactly zeros but very small strictly positive numbers.

We start with a market where search cost dispersion is relatively low. For this we set (α, β) =

(1.5, 1.5).8 Given the parameters of the model, we solve for the equilibrium of the model for

7Moraga-González, Sándor, and Wildenbeest (2016) study how the shape of the search cost distribution affects
pricing in a model of consumer search for differentiated products and find that as search costs increase, prices may
go up or down depending on the exact shape of the search cost density.

8Mean search cost is equal to α
α+β

= 0.5 and variance is equal to αβ
(α+β)2(α+β+1)

' 0.06.
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different numbers of firms. The results are reported in Table 1. Table 1 shows how consumer

search intensities change as we increase the number of firms. As shown in the table, an important

feature is that very few consumers make an exhaustive search in the market. For instance, if

there are 10 firms in the industry about 99% of the consumers searches for a maximum of 3 firms.

Moreover, although all search intensities are strictly positive, hardly any consumer searches for

more than 4 firms, even in markets where there are more than 10 firms that can be visited.
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Figure 2: Prices and the number of firms

The fact that most consumers do not compare many prices is reflected in equilibrium prices.

Figure 2 shows how prices change with the number of firms. As indicated by the black solid line,

the average price is relatively high under duopoly but decreases as the number of firms rises. The

decrease of the mean price is due to the fact that the share of consumers comparing two or three

prices increases in the number of firms. The average price is what is important for consumers who do

not exercise price comparisons so consumers benefit from the resulting average price decreases. The

dashed black line in Figure 2 shows that the expected minimum price also decreases as N increases,

which is relevant for consumers who compare prices of all firms in the market.9 These gains are

9The expected minimum price out of s searches is

E[min{p1, p2, . . . , ps}] =

∫ 1

0

vsµ1∑N
k=1 kµk(1− z)k−s

dz.
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(a) Consumer Surplus for Beta(1.5,1.5)
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(b) Consumer surplus for Beta(0.1,0.1)
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(c) Producer surplus
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(d) Welfare

Figure 3: Surplus and the number of firms

also reflected in the consumer surplus, indicated in Figure 3(a), as it increases in N .10 The black

curves in Figures 3(c) and 3(d) show that aggregate profits, which are given by PS = (v − r)µ1,

and social welfare are also increasing in N . Social welfare is just the difference between consumers’

valuation and the unit cost minus total search cost—even though this shows that search costs are

wasteful, the consumers who search more when N goes up are exactly those with low search costs,

and as a result the total search cost in the market goes down and welfare goes up in N . In sum,

entry in this case of low search cost dispersion would lead to lower average prices, higher consumer

surplus, lower industry profits, and higher welfare.

10Aggregate consumer surplus is given by CS =
∑N
s=1 µs [v − E[min{p1, p2, . . . , ps} − s · cs], where the total average

cost of searching s times is s · cs = s
∫ cs−1

cs
cg(c)dc.
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The situation is quite different when search costs are much more dispersed, holding everything

else equal. Consider (α, β) = (0.1, 0.1), which implies the new search cost distribution is a mean-

preserving spread of the previous one. The new equilibrium search intensities are reported in Table

2. What is different in this case of high search cost dispersion is that a great deal of consumers

conduct an exhaustive search; as before, the extent of price comparison in the market increases as

the number of firms rises.

Table 2: Equilibrium search intensities for (α, β) = (0.1, 0.1) (mean is 0.5; variance is 0.21)

Number of firms N
2 3 4 5 6 7 8 9 10 11 12 13 14 15

µ0 0.43 0.44 0.45 0.46 0.46 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.48 0.48
µ1 0.15 0.12 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
µ2 0.42 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
µ3 - 0.39 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
µ4 - - 0.37 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
µ5 - - - 0.36 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
µ6 - - - - 0.34 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
µ7 - - - - - 0.33 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
µ8 - - - - - - 0.33 0.01 0.01 0.01 0.01 0.01 0.01 0.01
µ9 - - - - - - - 0.32 0.01 0.01 0.01 0.01 0.01 0.01
µ10 - - - - - - - - 0.31 0.01 0.01 0.01 0.01 0.01
µ11 - - - - - - - - - 0.31 0.01 0.01 0.01 0.01
µ12 - - - - - - - - - - 0.30 0.01 0.01 0.01
µ13 - - - - - - - - - - - 0.30 0.01 0.01
µ14 - - - - - - - - - - - - 0.29 0.01
µ15 - - - - - - - - - - - - - 0.29

Notes: The entries with zeros are not exactly zeros but very small strictly positive numbers.

Figure 2 also plots the equilibrium mean price as well as the expected minimum price against

the number of competitors in the industry for the case of relatively dispersed search costs (gray

curves). Under duopoly, the average price is lower in comparison to the case in which search costs

are not very dispersed. What is remarkably different is that the mean price increases as more firms

enter the industry. Moreover, Figure 3(b) shows that consumer surplus first increases and then

decreases as the number of firms goes up beyond nine firms. Moreover, the gray curves in Figures

3(c) and 3(d) indicate that profits and welfare decrease as well as the number of competitors goes

up. The crucial distinction between this case and the previous one is the equilibrium consumer

search intensity. Table 2 shows that unlike the case shown in Table 1, a relatively large share
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of consumers compares prices of all firms in the market. Consumers who conduct an exhaustive

search in the market become disproportionately less attractive for a firm as more competitors are

around. This effect, which leads to higher prices, has here a dominating influence and results in

lower consumer surplus and less industry profits. As a result, welfare decreases in N as well.
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Figure 4: Effect of entry on expected price, and search cost dispersion

In the analysis above we have chosen to look at search cost distributions that reflect two rela-

tively extreme cases (fairly high and low search cost dispersion). This has been to show as neatly

as possible that the effect of an increase in the number of sellers on market prices can differ starkly.

This is however a more general observation; as a matter of fact, even for intermediate levels of

search cost dispersion, entry may lead to lower or higher average prices. This is illustrated in

Figure 4, which shows how the level of search cost dispersion relates to the percentage change in

the expected price following the entry of an additional firm.11 The curves represent the change in

expected price caused by adding a firm to a market that initially has two, three, and four firms,

respectively; as the graph illustrates, for intermediate levels of search cost dispersion, say 0.12, the

expected price may drop when moving from two to three firms, but may increase when moving

from four to five firms. In summary, this shows that whether entry causes an increase or a decrease

in average prices depends on the extent of search frictions in the market as well as the number of

11As before, we use the variance of a beta distribution with mean 0.5 as a measure of search cost dispersion. The
percentage change in price %∆E[p] is defined as the change in expected price when moving from N to N + 1 firms,
divided by the expected price for N firms (×100 to make it a percentage).

17



firms.

4 Conclusions

The seminal contribution of Burdett and Judd (1983) has become central to the understanding of

the role of information frictions in generating observed market inefficiencies. Burdett and Judd’s

model has seen many applications, not only in consumer search but also in labor economics and

finance. This paper has generalized Burdett and Judd’s (1983) model to the case in which consumers

have heterogeneous search costs. This extension has been used in the empirical literature as the

workhorse model for structurally estimating search costs in homogenous product markets.

Our paper has contributed to the literature by demonstrating that a symmetric Nash equilibrium

in pure strategies always exists for arbitrary search cost distributions with strictly increasing CDF.

In addition, we have presented a uniqueness result which, together with numerical simulations,

suggest that the equilibrium will be unique at least for densities that are not too decreasing.

Finally, we have also explored how entry of firms affects the market equilibrium. We have

found that the effects of an increase in the number of competitors is highly sensitive to the nature

of search cost dispersion. When consumers have similar search costs, our model with search cost

heterogeneity predicts effects that are in line with traditional Cournot and Betrand models, that

is, mean prices fall and consumer surplus increases in the number firms. By contrast, if search

costs are relatively dispersed across the consumer population, mean prices increase and consumer

surplus may decrease in the number of firms.
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Appendix

Proof of Proposition 1. First, suppose, on the contrary, that µ1 = 0. Then we have two

possibilities: (i) either µ0 = 1 in which case the market does not open, or (ii) µk > 0 for some

k = 2, 3, . . . , N in which case all firms would charge a price equal to the marginal cost r. But if this

were so, consumers would gain by deviating and searching less. Second, suppose, on the contrary,

that µ1 = 1. Then firms prices would be equal to the monopoly price v. But if this were so then

consumers would gain by deviating and exiting the market. Finally, suppose, on the contrary, that

1 > µ1 > 0 and that µk = 0 for all k = 2, 3, . . . , N . Then µ0 + µ1 = 1 and the argument applied

before would hold here too; as a result, there must be some k ≥ 2 for which µk > 0. �

Proof of Proposition 2. Suppose, on the contrary, that firms did charge a price p̂ ∈ (r, v]

with strictly positive probability in equilibrium. Consider a firm i charging p̂. The probability that

p̂ is the only price in the market is strictly positive. This occurs when all other firms are charging

p̂. From Proposition 1 we know that in equilibrium there exists some k̂ ≥ 2 for which µk̂ > 0.

Consider the fraction of consumers sampling k̂ firms. The probability that these consumers are

sampling firm i is strictly positive; as a result, firm i would gain by deviating and charging p̂ − ε

since in that case the firm would attract all consumers in µk̂ who happened to sample firm i. This

deviation would give firm i a discrete increase in its profits and thus rules out all atoms in the set

(r, v]. It remains to be proven that an atom at the marginal cost r cannot be part of an equilibrium

either. Consider a firm charging r. From Proposition 1 we know that 1 > µ1 > 0. As a result, this

firm would serve a fraction of consumers at least as large as µ1/N but obtain zero profits. This

implies that the firm would have an incentive to deviate by increasing its price. We now prove that

the upper bound of F (p) must be equal to v. Suppose not and consider a firm charging an upper

bound p < v. Since this firm would not sell to any consumer who compares prices, its payoff would

simply be equal to (p− r)µ1/N , which is strictly increasing in p; as a result the firm would gain by

deviating and charging v. �
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Proof of Theorem 1. Let θ := v− r and consider the change of variables xk := G (ck). Then

we can rewrite the equations describing the equilibrium (14)-(15) as

x0 = G

(
θ − θ

∫ 1

0

x0 − x1∑N
h=1 h (xh−1 − xh)uh−1

du

)
;

xk = G

(
θ

∫ 1

0

x0 − x1∑N
h=1 h (xh−1 − xh)uh−1

[
kuk−1 − (k + 1)uk

]
du

)
, k = 1, 2, . . . , N − 1, (xN = 0) .

Since x0 = G(c0) > 0 in any interesting market equilibrium, we can define yk = xk
x0

. Then the

solution of this system will be

x0 = G

(
θ − θ

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)
,

x1 = x0y1, . . . , xN−1 = x0yN−1,

if y = (y1, y2, . . . , yN−1) is the solution of the following system of equations:

yk =

G

(
θ
∫ 1
0

(1− y1)
[
kuk−1 − (k + 1)uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)

G

(
θ − θ

∫ 1
0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

) , k = 1, 2, . . . , N − 1, (yN = 0) . (16)

We are looking for a solution of this latter system in [0, 1]N−1 for which y1 ≥ y2 ≥ . . . ≥ yN−1.

For this purpose, we define the set Y = {(y1, y2, . . . , yN−1) ∈ [0, 1]N−1 : y1 ≥ y2 ≥ . . . ≥ yN−1}.

Likewise, define the function H = (H1, . . . ,HN−1) : Y \ {0} → RN−1 with

Hk (y) =

G

(
θ
∫ 1
0

(1− y1)
[
kuk−1 − (k + 1)uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)

G

(
θ − θ

∫ 1
0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

) , k = 1, 2, . . . , N − 1, (yN = 0) .

Then the solution of the system (16) is a fixed point of H. In what follows we apply Brouwer’s

theorem to show that the function H has a fixed point.

First we show that the function H takes values in the set Y . This is intuitively clear based on
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the properties of the model since by appropriate transformations it is equivalent to the inequalities

c0 ≥ c1 ≥ · · · ≥ cN−1. Here we provide a direct proof.

Lemma 1 The function H(·) takes values in Y .

Proof. Take an arbitrary y ∈ Y \ {0}. We need to prove that 0 ≤ Hk (y) ≤ 1 for all

k = 1, 2, . . . , N−1 and Hk (y) ≤ Hk−1 (y) for all k = 2, . . . , N−1. The inequality 0 ≤ Hk (y) follows

straightforwardly from the nonnegativity of G. In order to prove Hk (y) ≤ 1 and Hk (y) ≤ Hk−1 (y)

we use integration by parts. First we observe that

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du =

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh) (1− u)h−1

du.

By integration by parts

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh) (1− u)h−1

du

= 1−
∫ 1

0

(1− y1)u
[∑N

h=2 h (h− 1) (yh−1 − yh) (1− u)h−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh) (1− u)h−1

)2 du.

So the argument of G in the denominator is proportional to

1−
∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

=

∫ 1

0

(1− y1)u
[∑N

h=2 h (h− 1) (yh−1 − yh)uh−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2 du.

21



The argument of G in the numerator of Hk(·) is proportional to

∫ 1

0

(1− y1)
[
kuk−1 − (k + 1)uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

=

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

d
(
uk − uk+1

)

=

∫ 1

0

(1− y1)uk (1− u)
[∑N

h=2 h (h− 1) (yh−1 − yh)uh−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2 du.

The inequality Hk(y) ≤ 1 follows from the fact that u ≥ uk(1− u) while the inequalities Hk(y) ≤

Hk−1(y), k = 2, 3, . . . , N − 1 follow because all terms in the expressions of the integrals are non-

negative and uk is decreasing in k. �

We now apply Brouwer’s fixed point theorem to prove a fixed point of H exists. Since the

denominator of Hk is 0 for y = 0, we need to modify the function H in the neighborhood of 0.

We do this in three steps: (i) we first prove that the limit inferior of H when y → 0 is strictly

positive (Proposition 7). (ii) We then construct a neighborhood V of 0 such that H is continuously

extendable from Y \ V to Y such that the extended function has no fixed point in V (Lemma

3, Lemma 4). (iii) Finally, we apply Brouwer’s fixed point theorem to the extended function to

establish the existence of a solution of the system (16).

We start by showing that the limit inferior of H is strictly positive. Since Hk(y) ≤ Hk−1(y),

k = 2, 3, . . . , N − 1, is is sufficient to study the limit inferior of H1.

Proposition 7 lim infy→0
y∈Y

H1 (y) ≥


1
3 if g (0) > 0,

1
9 if g (0) = 0 and g′ (0) > 0.

Proof. By definition lim infy→0
y∈Y

H1 (y) = lim
ε→0

inf {H1 (y) : y ∈ Y ∩B (0, ε) \ {0}}, whereB (0, ε) ={
x ∈ RN−1 : ‖x‖ < ε

}
. By Lemma 2 below there exists an ε > 0 such that H1 (y) is increasing in

yk for k = 2, . . . , N − 1 on Y ∩B (0, ε) \ {0}. This implies that for any y ∈ Y ∩B (0, ε) \ {0} such
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that y1 > 0

H1 (y1, y2, . . . , yN−1) ≥ H1 (y1, y2, . . . , yN−2, 0) ≥ H1 (y1, y2, . . . , 0, 0) ≥ . . . ≥ H1 (y1, 0, . . . , 0)

=
G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) .

Therefore,

lim inf
y→0
y∈Y

H1 (y) ≥ lim
ε→0

inf

 G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) : 0 < y1 < ε

 .

The limit on the right hand side is by definition the limit inferior of
G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ−θ

∫ 1
0

1−y1
1−y1+2y1u

du
) when

y1 → 0, y1 > 0. We show that this limit inferior is just equal to the limit, due to the fact that the

limit exists. Indeed, we can apply the l’Hôpital rule to obtain

lim
y1→0
y1>0

G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) = lim

y1→0
y1>0

−
g
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
) ∫ 1

0
u(1−2u)

(1−y1+2y1u)
2du

g
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) ∫ 1

0
u

(1−y1+2y1u)
2du

. (17)

If g (0) > 0 then this limit is further equal to

−
g
(
θ
∫ 1
0 (1− 2u) du

) ∫ 1
0 u (1− 2u) du

g
(
θ − θ

∫ 1
0 du

) ∫ 1
0 udu

= −
g (0)

∫ 1
0 u (1− 2u) du

g (0)
∫ 1
0 udu

= −
∫ 1
0 u (1− 2u) du∫ 1

0 udu
=

1

3
.

If g (0) = 0 and g′ (0) > 0 then the limit (17) is equal to the limit of

−
g′
(
θ
∫ 1
0

(1−y1)(1−2u)du
1−y1+2y1u

)
θ
∫ 1
0
−2u(1−2u)du
(1−y1+2y1u)

2

∫ 1
0

u(1−2u)du
(1−y1+2y1u)

2 + g
(
θ
∫ 1
0

(1−y1)(1−2u)du
1−y1+2y1u

) ∫ 1
0

2u(1−2u)2du
(2uy1−y1+1)3

g′
(
θ − θ

∫ 1
0

(1−y1)du
1−y1+2y1u

) ∫ 1
0

(−θ)(−2u)du
(1−y1+2y1u)

2

∫ 1
0

udu
(1−y1+2y1u)

2 + g
(
θ − θ

∫ 1
0

(1−y1)du
1−y1+2y1u

) ∫ 1
0

2u(1−2u)du
(2uy1−y1+1)3

= −
g′ (0) θ

∫ 1
0 (−2u) (1− 2u) du

∫ 1
0 u (1− 2u) du+ g (0)

∫ 1
0 2u (1− 2u)2 du

g′ (0) (−θ)
∫ 1
0 (−2u) du

∫ 1
0 udu+ g (0)

∫ 1
0 2u (1− 2u) du

=

∫ 1
0 (−2u) (1− 2u) du

∫ 1
0 u (1− 2u) du∫ 1

0 (−2u) du
∫ 1
0 udu

=
1

9
.

�

Lemma 2 There exists an ε > 0 such that H1 (y) is increasing in yk for k = 2, . . . , N − 1 on
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Y ∩B (0, ε) \ {0}.

Proof. For simplicity of notation we use

H1 (y) =
U (y)

D (y)
,

where U,D : Y → R

U (y) = G

(
θ

∫ 1

0

(1− y1) (1− 2u)

1− y1 +
∑N

h=2 h (yh−1 − yh)uh−1
du

)
,

D (y) = G

(
θ − θ

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)
.

The partial derivatives of U and D with respect to yk for some k ∈ {2, . . . , N − 1} are

∂U

∂yk
= g

(
θ

∫ 1

0

(1− y1) (1− 2u)

1− y1 +
∑N

h=2 h (yh−1 − yh)uh−1
du

)
θIU (y) ,

∂D

∂yk
= g

(
θ − θ

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)
(−θ) ID (y) ,

where

IU (y) =

∫ 1

0

(1− y1) (1− 2u)
[
kuk−1 − (k + 1)uk

](
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2 du,
ID (y) =

∫ 1

0

(1− y1)
[
kuk−1 − (k + 1)uk

](
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2du.
By integration by parts

ID (y) = 2

∫ 1

0
(1− y1)

(
uk − uk+1

) ∑N
h=2 h (h− 1) (yh−1 − yh)uh−2(

1− y1 +
∑N

h=2 h (yh−1 − yh)uh−1
)3du.

Now, ID ≥ 0 for any y ∈ Y because all terms in the integral are nonnegative. Therefore ∂D
∂yk
≤ 0

for any y ∈ Y , which implies that D is decreasing in yk at any point y ∈ Y .
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Regarding the integral IU we note that

IU (0) =

∫ 1

0
(1− 2u)

[
kuk−1 − (k + 1)uk

]
du =

2

(k + 1) (k + 2)
> 0.

So for each k there is an εk > 0 such that IU (y) ≥ 0 for any y ∈ Y ∩ B (0, εk); so for ε =

min {ε2, . . . , εN−1} it holds that IU (y) ≥ 0 for any y ∈ Y ∩ B (0, ε). Therefore ∂U
∂yk
≥ 0 for any

y ∈ Y ∩B (0, ε) and k = 2, . . . , N−1. This implies that U is increasing in yk for any y ∈ Y ∩B (0, ε).

This establishes that H1 (y) is increasing in yk for any y ∈ Y ∩B (0, ε) \ {0}. �

So, we have established that the limit inferior of H1 (y) when y → 0 is strictly positive. Then

the following statement establishes that there is an ε > 0 such that the set Y ∩ [0, ε]N−1 can take

the role of the neighborhood V mentioned above.

Lemma 3 Let H : Y \ {0} → RN−1 be a continuous function such that lim infy→0
y∈Y

H1 (y) ≥ a > 0.

Then there exists ε > 0 such that H1 (y) > ε for any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ ε.

Proof. Condition lim infy→0
y∈Y

H1 (y) ≥ a > 0 implies that for any δ > 0 there exists εδ > 0 such

that H1 (y) > a − δ for any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ εδ. Take δ1 > 0 such that

a−δ1 > 0. Then there exists ε1 > 0 such that H1 (y) > a−δ1 for any y = (y1, y2, . . . , yN−1) ∈ Y \{0}

with y1 ≤ ε1. Now, if a− δ1 > ε1 then choose ε = ε1 and the result is proved. If a− δ1 ≤ ε1 then

choose ε > 0 such that a − δ1 > ε. For any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ ε < ε1 it

holds that H1 (y) > a− δ1 > ε, so in this case the result is proved as well. �

Since we established condition lim infy→0
y∈Y

H1 (y) ≥ a > 0 in Proposition 7 we can now use ε

from Lemma 3. Define the function J = (J1, . . . , JN−1) : Y → RN−1 such that

J (y) =


H (y) for y ∈ Y \ Yε,

H (ε, y2, . . . , yN−1) for y ∈ Yε,

where Yε = {(y1, y2, . . . , yN−1) ∈ Y : y1 ≤ ε} = Y ∩ [0, ε]N−1. Notice that J is also defined in 0.
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Lemma 4 The function J has the properties: (i) J is continuous. (ii) J takes values in Y . (iii)

J has no fixed point in Yε.

Proof. (i) Based on the fact that H is continuous, J is also continuous at points y that are not

on the boundary between Yε and Y \ Yε. The only non-trivial case is when y is on the boundary

between Yε and Y \ Yε, that is, in {(y1, y2, . . . , yN−1) ∈ Y : y1 = ε}. In this case the limit of J (tn)

for a sequence (tn)n≥1 ⊂ {(y1, y2, . . . , yN−1) ∈ Y : y1 > ε} with tn → y should be J (y). Indeed,

J (tn) = H (tn)→ H (y) = H (ε, y2, . . . , yN−1) = J (y).

(ii) The fact that J takes values in Y follows from Lemma 1 trivially for the case (y1, y2, . . . , yN−1) ∈

Y \ Yε. For the case (y1, y2, . . . , yN−1) ∈ Yε it follows because (ε, y2, . . . , yN−1) ∈ Y for any

(y1, y2, . . . , yN−1) ∈ Yε, so J (ε, y2, . . . , yN−1) = H (ε, y2, . . . , yN−1) ∈ Y .

(iii) For an arbitrary (y1, y2, . . . , yN−1) ∈ Yε we have J1 (y1, y2, . . . , yN−1) = H1 (ε, y2, . . . , yN−1).

Since y = (ε, y2, . . . , yN−1) ∈ Y \{0} with y1 ≤ ε, by Lemma 3 it holds that H1 (ε, y2, . . . , yN−1) > ε.

Thus J1 (y1, y2, . . . , yN−1) > ε ≥ y1, so (y1, y2, . . . , yN−1) cannot be a fixed point of J . �

Finally we can establish that the system of equations (16) has a solution. By Lemma 4 the

function J : Y → Y is continuous. Y is a convex and compact set, so by Brouwer’s fixed point

theorem J has a fixed point y∗. The fixed point cannot be in Yε by Lemma 4, so y∗ ∈ Y \ Yε.

Therefore y∗ = J (y∗) = H (y∗), that is, y∗ ∈ Y \ Yε is a fixed point of H. By definition, any fixed

point of H is a solution of the system (16). This completes the proof of existence of equilibrium in

Theorem 1. �

Proof of Proposition 6. Setting N = 2 in equations (16) gives

x0 = G

(
θ − θ

∫ 1

0

x0 − x1
x0 − x1 + 2x1u

du

)
;

x1 = G

(
θ

∫ 1

0

(x0 − x1) (1− 2u)

x0 − x1 + 2x1u
du

)
.

Using the notation introduced before, y = x1/x0 ∈ (0, 1), the solution to this system of equations
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is given by the solution to H1(y)− y = 0, or

φ (y) ≡ yG (θ − θ (1− y) I(y))−G (θ (1− y) J(y)) = 0. (18)

where

I(y) =

∫ 1

0

1

1− y + 2yu
du =

log (1 + y)− log (1− y)

2y
;

J(y) =

∫ 1

0

1− 2u

1− y + 2yu
du =

log (1 + y)− log (1− y)− 2y

2y2
.

Let G (c) = (c/c)a for some a > 0 with support [0, c]. From equation (18), since the case y = 0

is not interesting and G (c0 (y)) > 0 for y > 0, it is sufficient to prove that the equation

y =
G (c1 (y))

G (c0 (y))
(19)

has a unique solution. Since the LHS of equation (19) is increasing in y, it suffices to show that

the RHS decreases in y.12 Let h (y) denote the RHS of equation (19):

h (y) =

(
c1(y)
c

)a(
c0(y)
c

)a =
c1 (y)a

c0(y)a

The derivative of h (y) is

dh (y)

dy
=
adc1(y)dy ca−11 (y) ca0 (y)− aca1 (y) dc0(y)dy ca−10 (y)

c2a0 (y)

=
aca−11 (y) ca−10 (y)

c2a0 (y)

(
dc1 (y)

dy
c0 (y)− c1 (y)

dc0 (y)

dy

)
.

12In general this is equivalent to requiring that

g(c1(y))

G(c1(y)

dc1(y)

dy
− g(c0(y))

G(c0(y)

dc0(y)

dy
< 0.

Intuitively one case when this is violated can occur when the density g decreases steeply so that g(c1(y)) is much
bigger than g(c0(y). With not too decreasing densities, the inequality above will tend to be satisfied.

27



Since

dc1 (y)

dy
=

2y (2 + y)− (1 + y) (2− y) ln 1+y
1−y

2y3 (1 + y)
,

dc0 (y)

dy
=
−2y + (1 + y) ln 1+y

1−y
2y2 (1 + y)

,

we obtain that

dc1 (y)

dy
c0 (y)− c1 (y)

dc0 (y)

dy
=

= 4y2 (1 + 2y) + 2y (1 + y) (2− y) ln
1− y
1 + y

+
(
1− y2

)
(1− y) ln2 1− y

1 + y
.

This expression is negative for 0 < y < 1, so dh (y) /dy < 0, and therefore, the equilibrium is

unique. �
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