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Zsolt Sándor‡

Matthijs R. Wildenbeest§

First version: February, 2020
Updated: May, 2020

Abstract

This paper extends the literature on simultaneous search by allowing for differentiated products
and consumer search cost heterogeneity. In a duopolistic market, consumers with sufficiently low
search costs choose to inspect the products of the two firms and purchase, if any, the most suitable;
consumers with higher search costs choose to examine just one of the products; consumers with
prohibitively high search costs do not check any of the products and drop out of the market
altogether. We show conditions under which a symmetric price equilibrium always exists. We
provide a necessary and sufficient condition on the search cost distribution under which an increase
in the costs of search of all consumers may result in a lower, equal or higher equilibrium price.
We extend this analysis to the case with more than two firms. The effects of prominence on
equilibrium prices are also studied. The prominent firm charges a higher price than the non-
prominent firm and both their prices are below the symmetric equilibrium price. Consequently,
with simultaneous search, market prominence increases the surplus of consumers.

Keywords: non-sequential search, simultaneous search, oligopoly, search cost heterogeneity,
differentiated products, non-uniform sampling, prominence

JEL Classification: D43, C72

∗We have benefited from the comments of an Editor and two anonymous referees, as well as from presentations
at Universidad Carlos III Madrid and CEMFI. The discussants and the audiences at the 4th Workshop on Search
and Switching Costs (Higher School of Economics, Moscow, May 2013), the EARIE 2018 (Athens) and the MaCCI
Annual Conference 2020 (Mannheim) are also gratefully acknowledged. Parts of this paper were included in an earlier
manuscript entitled “Do higher search costs make markets less competitive?”
†Vrije Universiteit Amsterdam and University of Groningen. E-mail: j.l.moragagonzalez@vu.nl. Moraga is also

affiliated with the Tinbergen Institute, the CEPR, and the Public-Private Sector Research Center (IESE, Barcelona).
‡Sapientia University Miercurea Ciuc. E-mail: zsosan@gmail.com.
§Kelley School of Business, Indiana University, E-mail: mwildenb@indiana.edu.



1 Introduction

The early consumer search literature, which dates back at least to the 1960s, was dominated by ho-

mogeneous product models and focused on how search costs limited consumer price discovery, which

often resulted in price dispersion (Stigler, 1961; Burdett and Judd, 1983; Stahl, 1989). With the rise

of the Internet, it has become evident that search frictions, by constraining not only price but also

product choice sets, distort consumer choice further. To properly capture this important feature, the

more recent consumer search literature has focused on modelling markets for differentiated products.

Moreover, following Weitzman (1979) and Wolinsky (1983, 1986), the accent has been put on models

of sequential consumer search (Anderson and Renault, 1999; Armstrong, Vickers and Zhou, 2009;

Moraga-González and Petrikaitė, 2013).

This emphasis on sequential consumer search is not always justified because, depending on the

context, simultaneous search, also referred to as non-sequential or fixed-sample-size search, may be

superior to sequential search (Morgan and Manning, 1985). Further, empirically it seems that in some

industries simultaneous search is more prevalent than sequential search. For example, recent work

by De Los Santos, Hortaçsu, and Wildenbeest (2012) and Honka and Chintagunta (2017) has shown

that for books and car insurance sold online, observed consumer search patterns are consistent with

simultaneous search.1 Furthermore, because search decisions do not depend on search outcomes when

searching simultaneously, obtaining closed-form expressions for purchase probabilities and market

shares is relatively easy and this has made models of simultaneous search for differentiated products

popular in recent empirical work (see, e.g., De Los Santos, Hortaçsu, and Wildenbeest, 2012; Honka,

2014; Moraga-González, Sándor and Wildenbeest, 2015; Pires, 2016, 2018; Ershov, 2018; Murry and

Zhou, 2019; Lin and Wildenbeest, 2019; and Donna, Pereira, Pires, and Trindade, 2019).

Despite this, market models of simultaneous search for differentiated products remain understud-

ied in the theoretical literature. The purpose of this paper is narrowing this gap by extending the

literature on consumer search for differentiated products to allow for simultaneous consumer search

and consumer search cost heterogeneity. Within this framework, we derive novel results concerning

the impact of search costs on competition and the effect of firm prominence on prices.

To the best of our knowledge, Anderson, De Palma, and Thisse (1992, p. 246) is the only theoret-

1To be able to empirically distinguish between sequential and simultaneous search, De Los Santos, Hortaçsu, and
Wildenbeest (2012) exploit data on the sequence of searches and focus on a crucial difference between the two search
methods in terms how search outcomes affect search behavior: when consumers search sequentially, the decision to
continue searching depends on the outcome of the search, while with simultaneous search consumers commit to a
certain number of searches before seeing any search outcomes. Honka and Chintagunta (2017) propose a test that only
requires data on consideration sets.
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ical study of equilibrium pricing with simultaneous consumer search for differentiated products.2 In

their model, N firms offer differentiated products to consumers who initially do not know how much

the products are worth to them. The value of the match between a consumer and a product is a

random draw from the double exponential distribution. Only after paying a search cost, a consumer

can learn the value she places on a given product. Firms are symmetric and all consumers have the

same utility and search cost. The problem of a consumer is thus to choose how many products to

inspect; after having learned the match values of the inspected products, the consumer picks the

product that yields the highest utility.

In contrast to markets for homogeneous products in which consumers optimally choose to check

the prices of at most two firms (Burdett and Judd, 1983; Janssen and Moraga-González, 2004),

Anderson, De Palma, and Thisse show that with differentiated products, depending on the magnitude

of the search cost, consumers may check the products of any number of firms (including all of them

if the search cost is sufficiently low). Specifically, they show that the equilibrium price in the search

model is equal to the Perloff and Salop’s (1985) (full information) price that would prevail in a market

where the number of competitors is equal to the sample size selected by consumers. In equilibrium

the price is therefore insensitive to the number of sellers. Further, small increases in the search cost

do not affect the equilibrium price; it is only when the search cost increases by a sufficiently large

amount that consumers choose to inspect fewer products, which results in a higher equilibrium price.

Furthermore, market settings in which some firms are more salient than others (cf. the prominence

model of Armstrong, Vickers, and Zhou, 2009) are no different from symmetric market environments.

The three rigidities just mentioned, namely that prices respond neither to small changes in search

costs, nor to variations in the number of competitors, nor to differences in the market saliency of

the firms, are somewhat unsatisfactory model features and we believe they are responsible for the

fact that models of simultaneous search for differentiated products have not been used much in the

theoretical consumer search literature. To deal with these limitations, we propose to introduce search

cost heterogeneity. When consumers differ in their costs of search, they optimally choose to inspect

different numbers of products. Consumers with sufficiently low search costs, then, choose to check all

products; consumers with higher search costs choose to inspect a subset of the products, the higher

their search costs the smaller the subset of products they inspect; consumers with prohibitively

high search costs do not search at all and drop out of the market altogether. A consumer search

equilibrium is then a partition of the consumer population into subsets of consumers inspecting

2For an authoritative and up-to-date survey of firm pricing with consumer search, see Anderson and Renault (2018).
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different numbers of products. From the point of view of an individual firm, consumers who check

many products are more price sensitive than consumers who inspect just a few. Optimal pricing

trades-off the incentives to extract profits from the less price sensitive consumers and the incentives

to compete for the more price sensitive ones. As we vary the number of firms, or change the search

cost distribution, the partition resulting from consumer equilibrium behavior changes smoothly,

which also smoothly changes the equilibrium price. Further, as sampling becomes less uniform due

to a firm’s enhanced market prominence, the allocation of consumers to firms changes continuously

and this is also reflected in the price equilibrium.

Using this new model, we derive the following results. We first study the characterization and

existence of a symmetric pure-strategy price equilibrium. For duopoly, we establish the existence of

equilibrium for the case in which the density of match values is uniform and the search cost density

is arbitrary. More general results are hard to obtain because the payoff of an individual firm consists

of the sum of the profit originating from the consumers who check only its product and the profit

stemming from the consumers who check the two products. Even if each of these profit functions

is well behaved, as it is known, the sum might not be well behaved. Intuitively, a symmetric pure-

strategy equilibrium may fail to exist because an individual firm may find it profitable to deviate

from a putative equilibrium price by significantly jumping up its price, thereby sacrificing profit from

the consumers who check the products of the two firms in exchange for profit from the consumers

who only check the deviants product. Such a deviation may be unprofitable under more general

conditions. In particular, we show that a symmetric pure-strategy price equilibrium also exists when

the distribution of match values is quadratic and convex and the distribution of search costs is

quadratic and concave.

We then proceed to an examination of how the equilibrium price responds to increases in search

costs in the duopoly model. When the search costs of all consumers are relatively low, that is, when

the upper bound of the search cost distribution is not too high, all consumers inspect the products

of the two firms and the price equilibrium is identical to that corresponding to a perfect information

model à la Perloff and Salop (1985).3 In such a case, a small increase in the search costs distribution

(in the sense of first-order stochastic dominance) does not affect the equilibrium price.

For intermediate values of the upper bound of the search cost distribution, some consumers inspect

one product and the rest of the consumers check both products. The proportions of consumers testing

3To be sure, in Perloff and Salop (1985) the market is fully covered in the sense that all consumers buy one of the
existing products.
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one or two products are endogenous and when search costs become higher, fewer consumers check

the two products. This leads to a higher equilibrium price.

For large values of the upper bound of the search cost distribution, some consumers drop out of

the market altogether, while the rest inspect either one product or both products. In such situations,

we derive a necessary and sufficient condition under which higher search costs for all consumers result

in a lower equilibrium price. This result, which extends insights from Moraga-González, Sándor, and

Wildenbeest (2017a) to the present case of simultaneous search for differentiated products, arises

because search costs affect both the intensive search margin (or search intensity) and the extensive

search margin (or the decision to search at all). Regarding the extensive search margin, an increase

in search costs tends to increase the elasticity of demand because high-search-cost consumers drop

out of the market altogether whereas regarding the intensive search margin, an increase in search

costs tends to decrease the elasticity of demand because consumers search less. Which of these

two effects dominates depends on the properties of the search cost distribution. The necessary and

sufficient condition we find in the simultaneous search setting is quite distinct from the condition

that would arise under sequential search (as in Moraga-González, Sándor, and Wildenbeest, 2017a).

In fact, it may occur that a change in search costs will have the opposite effect on equilibrium prices

in the sequential search model than in the simultaneous search model. This observation has a major

implication for the empirical researcher interested in the understanding of the impact of a reduction

in search costs. Even if a mis-specification of the search protocol does not bias the estimation of the

search cost distribution, counterfactual analysis of lower search costs may lead to wrong conclusions.

We identify a stochastic ordering of distributions, called the reversed hazard rate ordering, such

that higher search costs result in lower (higher) prices when the search cost distribution exhibits

the decreasing (increasing) reversed hazard rate property. The decreasing (increasing) reversed

hazard rate property is equivalent to the notion of log-submodularity (log-supermodularity) of the

cumulative distribution function. Intuitively, when the search cost distribution is log-submodular

(log-supermodular) an increase in search costs is more (less) noticeable at lower than at higher

quantiles, which implies that the share of consumers inspecting the two products relative to the share

of consumers inspecting just one increases (decreases) and the equilibrium price correspondingly goes

down (up). The log-supermodularity or log-submodularity of distributions is empirically testable

using estimates of search cost distributions. Based on these tests, the effects of policies that improve

search technologies and/or increase market transparency can then be predicted.

In Sections 5 and 6 we explore the robustness of these results. In Section 5 we consider the case of
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N firms and provide a characterization of the price equilibrium. Again, the nature of the equilibrium

depends on the magnitude of the upper bound of the search cost distribution. At one extreme, we

have an equilibrium in which all consumers inspect all products; hence, the price is equal to Perloff-

Salop’s price and insensitive to small increases in search costs. At the other extreme, we have a

situation in which not all consumers search. For intermediate levels of search costs, all consumers

inspect at least one product in equilibrium. Drawing from a recent contribution by Choi and Smith

(2017) about preservation of quasi-concavity under aggregation, we give conditions for the existence

of equilibrium assuming search costs are sufficienctly spread. We show that, for any arbitrary search

cost distribution, an equilibrium exists in markets with fewer firms than nine. With a larger number

of firms, the existence of equilibrium is guaranteed provided that the marginal cost of production is

sufficiently high. We also present numerical results based on a family of distributions that, depending

on parameters, can be ranked according to the increasing or decreasing reversed hazard rate ordering

and confirm that the equilibrium price may both increase or decrease in search costs when not all

consumers choose to search. Otherwise, if all consumers inspect at least one product, higher search

costs unambiguously lead to a higher equilibrium price.

In Section 6 we return to the duopoly model and examine the case in which the firms differ in the

likelihood with which they are sampled by consumers (Hortaçsu and Syverson, 2004; De los Santos,

2018). Intuitively, non-uniform sampling creates a market asymmetry in favour of the salient firm

because the consumers who visit it have higher search costs on average than the consumers who visit

the non-salient firm. As a result, the salient firm charges a higher price and obtains higher profits

than the non-salient one. Our result is consistent with McDevitt (2014), who finds that plumbing

firms in Chicago with a name that begins with an A or a number, and are therefore more likely to

be searched first when using the Yellow Pages, command a price premium that is 8.4 percent above

the average.

In contrast to the study of prominence of Armstrong, Vickers, and Zhou (2009), in our model with

simultaneous search market saliency does not hurt consumers. In fact, when one firm is prominent

and is therefore visited by all the consumers who choose to inspect only one product, in the unique

equilibrium both the prominent and the non-prominent firms charge lower prices and consumer

surplus is thus higher than when the firms are equally likely to be visited by consumers. We present

numerical results confirming this result for less extreme situations of saliency. Finally, our results

regarding the effects of search costs on the equilibrium prices remain with non-uniform sampling, so

both firms prices increase in search costs when all consumers search, while, depending on the search
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cost distribution, they can increase or decrease when the market is not covered.

The remainder of this paper is structured as follows. In the next paragraphs, we discuss the

related literature. In Section 2, we set up the model; the main insights of the paper are developed

for the case of duopoly so this section focuses on that case. Section 3 characterizes the pricing

equilibrium and studies its existence and uniqueness. Section 4 analyses the effects of higher search

costs. Section 5 presents the N -firm model and Section 6 shows how to model non-uniform sampling

within the simultaneous search framework. Section 7 concludes. Finally, an Appendix contains the

proofs not provided in the main text.

Related literature

The literature on consumer search can be classified in terms of the search protocol and whether or not

products are horizontally differentiated. Most of the early papers are about homogeneous product

markets. A key contribution is Diamond (1971), who demonstrated that when consumers search

sequentially to discover lower prices for a homogenous product, the unique pricing equilibrium is the

monopoly price. Stahl (1989) introduced a simple form of search cost heterogeneity into Diamond’s

framework (the well-known and much-used ‘shoppers and non-shoppers’ formulation) and derived

an equilibrium with price dispersion. Dealing with more general forms of consumer search cost

heterogeneity in models of sequential consumer search with homogeneous product sellers has proven

to be quite difficult (Stahl, 1996).

Burdett and Judd (1983) used a model of simultaneous search to show that an equilibrium with

price dispersion also exists in the absence of search cost heterogeneity. Janssen and Moraga-González

(2004) extended the setting of Burdett and Judd to oligopoly and allowed for an atom of shoppers.

Their main results are on the effects of entry. Hong and Shum (2006) were the first to introduce

general forms of consumer search cost heterogeneity in Burdett and Judd’s framework.4 However,

they did this for the purpose of estimation and did not provide existence of equilibrium or comparative

statics results. Moraga-González, Sándor, and Wildenbeest (2017b) prove the existence of a mixed

strategy equilibrium in such a model and present new results on the relationship between prices and

the number of firms. In the online appendix of Moraga-González, Sándor, and Wildenbeest (2017a),

an analysis of how search costs affect prices in such a model is provided.

Weitzman (1979) is the first paper that studies optimal consumer search for differentiated prod-

ucts. Wolinsky (1983, 1986) are early papers embedding sequential consumer search for differentiated

4See also Moraga-González and Wildenbeest (2008), Wildenbeest (2011), Moraga-González, Sándor, and Wilden-
beest (2013), and Sanches, Silva Junior and Srisuma (2018).
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products into market settings. These papers show that, because of product differentiation, monopoly

pricing is not an equilibrium. Hence, product differentiation invalidates the Diamond paradox. More-

over, with infinitely many firms, because consumers have positive search costs, prices remain above

the marginal cost (Wolinsky, 1986). Anderson and Renault (1999) developed the model further and

proved that prices increase when search costs rise, the number of firms decreases or products become

less differentiated, and that entry is excessive from a welfare perspective.

Wolinsky’s model is nowadays regarded as the workhorse model of sequential search for differ-

entiated products in the consumer search literature. As such, it has seen numerous extensions in

recent years. One such extension is the study of prominence of Armstrong, Vickers, and Zhou (2009)

(see also Wilson, 2010; Rhodes, 2011; Zhou, 2011 and Fishman and Lubensky, 2018). Their paper

studies the effects of non-random search in a sequential search framework in which consumers first

visit a firm—the so-called prominent firm—and, if unsatisfied with the offering of that firm, they

proceed by searching randomly among the non-prominent firms. In contrast to our results on non-

uniform sampling, Armstrong, Vickers, and Zhou show that the prominent product is offered at a

lower price than the non-prominent ones, and that making a product prominent increases industry

profit but lowers consumer surplus and welfare. Relatedly, Armstrong and Zhou (2011) and Haan

and Moraga-González (2011) present models in which a seller’s market prominence depends on its

choice of strategic variables such as price or advertising intensity.

Also closely related to our model, Moraga-González, Sándor, and Wildenbeest (2017a) extend

Wolinsky’s model by allowing for arbitrary search cost densities. They provide conditions for ex-

istence and uniqueness of equilibrium and derive the comparative statics effects of higher search

costs. Like in this paper, they find that prices can increase or decrease when search costs go up

provided that some consumers choose to not search in equilibrium. Because they deal with sequen-

tial search, their sufficient conditions for prices to increase or decrease in search costs are based on

properties of search cost densities (specifically, the likelihood ratio ordering), rather than of search

cost distributions (reversed hazard rate ordering), which are weaker.

2 Model

In this section we present a duopoly model of firms selling horizontally differentiated products to

consumers who search the market for satisfactory goods using a simultaneous search strategy.5 The

two firms produce the horizontally differentiated products at a marginal cost equal to r and choose

5The N -firm model is examined in Section 5.
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their prices simultaneously to maximize profits. We focus on pure-strategy symmetric Nash equilibria

(SNE); let p∗ denote a SNE price.

There is a unit mass of consumers. A consumer m has tastes for a product i described by the

following indirect utility function:

uim =

{
εim − pi if she buys product i at price pi;

0 otherwise.

The parameter εim is a match value between consumer m and product i. The match value εim is

assumed to be i.i.d. across consumers and products. Let F be the cumulative distribution function

of εim, defined over the support [0, ε]. We assume that the density function of match values, denoted

f , is differentiable and log-concave.

Consumers search for a satisfactory product non-sequentially. This means that they first choose

the number of firms to visit, including possibly none, in order to maximize expected utility. Once

they have visited the desired number of firms, they buy from the store offering them the best deal,

or else they do not buy anything. While deciding on the intensity of search, they hold correct

conjectures about the equilibrium price. The total cost of search of a consumer with search cost cm

who searches n = 0, 1, 2 times is ncm. Consumers have heterogeneous search costs. The distribution

of search costs is denoted G and the density g; we assume that g is positive on the support (c, c).

The lower bound c does not play much of a role so we will set it equal to 0 in much of what follows.

The upper bound c, by contrast, plays a very important role in the analysis that follows because it

drives consumer search participation. We allow it to be sufficiently large.

To put our model in perspective, it is a duopoly version of the workhorse search model of Wolin-

sky (1986), but with search cost heterogeneity and simultaneous search instead of sequential search.

The critical distinction between sequential and simultaneous search is that with simultaneous search

consumers commit ex-ante to a number of searches. As mentioned in the introduction, only Ander-

son, De Palma, and Thisse (1992) have theoretically analyzed simultaneous search for differentiated

products. In their model, all consumers have the same search cost and this results in an equilibrium

where all of them inspect the same number of products. With arbitrary search cost heterogeneity,

different consumers pursue distinct search strategies including the possibility of not searching at all.

As a matter of fact, when the upper bound of the search cost distribution is sufficiently large, some

consumers choose to directly consume the outside option (of zero) without inspecting any of the

products on offer.
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3 Equilibrium

In this section we characterize a symmetric pure-strategy Nash equilibrium. Let us start examining

the problem of the consumers. Assume both firms charge a price p∗ ∈ [r, pm], where pm denotes the

standard monopoly price. Because consumers have correct expectations about the equilibrium price,

a consumer with search cost c that chooses to only inspect the product of one firm expects to obtain

a utility equal to

U(1, c) = Pr[ε ≥ p∗][E[ε|ε ≥ p∗]− p∗]− c =

∫ ε

p∗
(ε− p∗)f(ε)dε− c. (1)

For a consumer to conduct at least one search, such an expected utility has to be positive. If an

individual with search cost c ∈ [0, c] exists such that equation (1) is equal to zero, then this means

that for some consumers it is not worthwhile to conduct a first search. Correspondingly, we define

the critical search cost value:

c0(p∗) ≡ min

{
c,

∫ ε

p∗
(ε− p∗)f(ε)dε

}
.

If c0(p∗) is strictly lower than the upper bound of the search cost distribution c, a fraction of the

consumer population will abstain from searching.

Consider now a consumer with search cost c for whom it is worth to conduct at least one search.

This consumer has to choose between inspecting the product of one firm only or inspecting the

products of the two firms. Let z2 ≡ max{ε1, ε2} and note that the distribution of z2 is F (ε)2. Then,

the utility a consumer expects to get when checking the two products is equal to

U(2, c) = Pr[z2 ≥ p∗][E[z2|z2 ≥ p∗]− p∗]− 2c =

∫ ε

p∗
(ε− p∗)2F (ε)f(ε)dε− 2c. (2)

Comparing this utility with that derived from inspecting only one product, she will prefer to visit

the two firms provided that U(2, c) > U(1, c), or∫ ε

p∗
(ε− p∗)2F (ε)f(ε)dε− c ≥

∫ ε

p∗
(ε− p∗)f(ε)dε.

Correspondingly, we define the critical search cost value c1(p∗) above which and below c0(p∗) con-

sumers prefer to inspect one product only:

c1(p∗) ≡ min

{
c,

∫ ε

p∗
(ε− p∗)[2F (ε)− 1]f(ε)dε

}
.

It is straightforward to check that c1(p∗) ≤ c0(p∗). Individuals with search cost below c1(p∗) prefer

to search twice. Hence, the population of consumers can be split into three groups of consumers.
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These three groups comprise consumers not searching at all, searching one time, and searching two

times. Denoting the group of consumers searching k times by µk(p
∗), we have:

µ0(p∗) = 1−G(c0(p∗)); µ1(p∗) = G(c0(p∗))−G(c1(p∗)); and µ2(p∗) = G(c1(p∗)) (3)

Notice that our assumptions on the search cost distribution imply that µ2(p∗) ≤ 1 (with equality

when c̄ is low enough), while 0 ≤ µi(p∗) < 1, i = 0, 1 (with equality when c̄ is sufficiently low).

Figure 1 illustrates two of these cases (the third, less interesting, case has µ2(p∗) = 1). In Figure

1(a) we represent a case where all consumers search; in particular the vertical (blue) line denoted

µ1(p∗) depicts the share of consumers who search once, while the vertical (blue) line denoted µ2(p∗)

shows the fraction of consumers who search twice. Note that when c is very low, all consumers will

search twice. In contrast, Figure 1(b) shows that for c0 sufficiently small, a fraction of consumers

µ0(p∗) finds it optimal to refrain from searching.
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Figure 1: Equilibrium search intensities and search costs

We now move to the problem of the firms. To characterize the symmetric pure-strategy equilib-

rium we start by deriving the payoff of a firm i that deviates from equilibrium pricing by charging a

price pi 6= p∗, given that the rival firm charges p∗ and given consumer search behavior. The expected

payoff to the deviant firm i is:

πi(pi; p
∗) = (pi − r)

(
µ1(p∗)

2
Pr[εi ≥ pi] + µ2(p∗) Pr [εi − pi ≥ max{εj − p∗, 0}]

)
, (4)

where Pr stands for probability. This payoff formula is easily understood. The per-consumer profit is

pi− r. Consumers who search only once happen to visit firm i with probability 1/2; these consumers

buy firm i’s product when the match values they obtain there are higher than the price pi. Consumers

who search twice only buy from firm i when firm i’s deal is better than the rival’s and the outside
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option of 0. Thus, the payoff can be seen as a weighted average of the perfect information monopoly

payoff and duopoly payoff, though the weights do not sum up to 1.

When firm i deviates by charging a higher price than the rival, pi > p∗, the payoff in equation

(4) can be written as follows:6

πi(pi > p∗; p∗) = (pi − r)
(
µ1(p∗)

2
(1− F (pi)) + µ2(p∗)

∫ ε

pi

F (ε− (pi − p∗))f(ε)dε

)
. (6)

The first order condition (FOC) in this case is:

dπi (pi)

dpi
=

µ1(p∗)

2
(1− F (pi)) + µ2(p∗)

∫ ε

pi

F (ε− pi + p∗) f (ε) dε

− (pi − r)
{
µ1(p∗)

2
f(pi) + µ2(p∗)

[∫ ε

pi

f (ε− pi + p∗) f (ε) dε+ F (p∗)f(pi)

]}
= 0(7)

Setting pi = p∗ in equation (7), replacing µ1(p∗) and µ2(p∗) by their corresponding values in terms

of the search cost distribution and rearranging, we obtain the necessary condition for a symmetric

equilibrium price p∗. Let us define the function

H (p) ≡ N(p)G (c1(p))−D(p)G (c0(p)) , (8)

where the functions D(p) and N(p) are given by

D(p) ≡ − [1− F (p)− (p− r) f(p)] ;

N(p) ≡ F (p)(1− F (p))− 2 (p− r)
(∫ ε

p
f (ε)2 dε+ F (p)f(p)− 1

2
f(p)

)
.

The necessary condition for a symmetric equilibrium price p∗ is

H (p∗) = 0. (9)

Equation (9) cannot be solved for an explicit solution in p∗. However, we now note that a

candidate equilibrium price p∗ ∈ [r, pm] exists. We observe first that when we set p = r we obtain

H (r) = (1− F (r)) [F (r)G (c1(r)) +G (c0(r))] > 0.

Second, if we set p = pm then we get that

H (pm) = N(pm)G (c1(pm)) , (10)

6When firm i deviates by charging a lower price, the payoff formula is different:

πi(pi < p∗; p∗) = (pi − r)

(
µ1(p∗)

2
(1− F (pi)) + µ2(p∗)

[
1− F (ε+ pi − p∗) +

∫ ε+pi−p∗

pi

F (ε− (pi − p∗))f(ε)dε

])
.

(5)
However, the condition that a symmetric price equilibrium must satisfy is the same as the one we derive below in
equation (9).

12



just because the price pm satisfies the first order condition for the monopoly problem: 1− F (pm)−

(pm − r) f(pm) = 0. The sign of H(pm) depends on the sign of N(pm), for which we can write:

N(pm) = F (pm)(1− F (pm))− 2 (pm − r)
(∫ ε

pm
f (ε)2 dε+ F (pm)f(pm)− 1

2
f(pm)

)
;

= [1 + F (pm)] [1− F (pm)]− 2 (pm − r)
(∫ ε

pm
f (ε)2 dε+ F (pm)f(pm)

)
;

= (pm − r)
[
f(pm) [1− F (pm)]− 2

∫ ε

pm
f (ε)2 dε

]
, (11)

where we have used the relation 1 − F (pm) − (pm − r) f(pm) = 0 once more. Upon observing

equation (11) it follows that the sign of H(pm) depends on the sign of the expression inside the

squared brackets. Let us define

M(p) ≡ f(p) [1− F (p)]− 2

∫ ε

p
f (ε)2 dε.

Taking the derivative of M with respect to p gives f ′(p)(1 − F (p)) + f(p)2, which is greater than

zero by log-concavity of f (see Corollary 2 in Bagnoli and Bergstrom, 2005). Since M is increasing

in p and is equal to zero when we set p = ε, we conclude that M(pm) < 0. Hence H (pm) < 0.

Since H is a continuous function with H (r) > 0 and H (pm) < 0, we conclude that for any

log-concave density f , there exists a candidate price equilibrium p∗ ∈ [r, pm]. Note also that at the

candidate equilibrium price p∗ we must have dH(p∗)/dp < 0. Further, we can prove that:

Proposition 1 Depending on the magnitude of the upper bound of the search cost distribution c, in

the simultaneous search duopoly model there may exist three types of SNE.

(A) A SNE where all consumers search twice and firms charge a price given by the solution to

1

2
(1− F 2(p∗))− (p∗ − r)

[∫ ε

p∗
f (ε)2 dε+ F (p∗)f(p∗)

]
= 0. (12)

This equilibrium is unique and exists provided that f is log-concave and

c ≤
∫ ε

p∗
(ε− p∗)[2F (ε)− 1]f(ε)dε. (13)

(B) A SNE where a fraction G
(∫ ε

p∗(ε− p
∗)[2F (ε)− 1]f(ε)dε

)
of consumers searches the two firms

and the rest just one, in which case the equilibrium price p∗ is given by the solution to equation

(9). For this equilibrium to exist c must satisfy the inequality∫ ε

p∗
(ε− p∗)f(ε)dε ≥ c >

∫ ε

p∗
(ε− p∗)[2F (ε)− 1]f(ε)dε, (14)

and when F is the uniform distribution, an equilibrium surely exists.
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(C) Finally, a SNE where a fraction G
(∫ ε

p∗(ε− p
∗)[2F (ε)− 1]f(ε)dε

)
of consumers searches the

two firms, a fraction G
(∫ ε

p∗(ε− p
∗)f(ε)dε

)
− G

(∫ ε
p∗(ε− p

∗)[2F (ε)− 1]f(ε)dε
)

of consumers

searches one firm only, and the rest do not search at all, in which case the equilibrium price

p∗ is given by the solution to equation (9). For this equilibrium to exist c must satisfy the

inequality

c >

∫ ε

p∗
(ε− p∗)f(ε)dε, (15)

and when F is the uniform distribution, an equilibrium surely exists.

Proof. See the Appendix.

Proving the existence of equilibrium when c is relatively large is challenging because the payoff

of a firm consists of the sum of the payoff originating from the consumers who check only its product

and the payoff stemming from the consumers who check the two products. Under the log-concavity

of f , each of these payoffs is quasi-concave (which follows from an application of the Prékopa (1973)

aggregation result in our setting). Despite this, unfortunately the sum of these payoffs may fail to be

quasi-concave, which implies that we need to impose additional restrictions on the primitives of the

model in order to guarantee the existence of a pure-strategy equilibrium. In the Appendix we show

that, for any arbitrary search cost distribution G, the payoff of a firm is strictly concave in a firm’s

own price when match values are uniformly distributed, which ensures the existence of equilibrium.

For arbitrary distributions of match values F , the equilibrium may fail to exist. The problem

is that an individual firm may find it profitable to deviate from a putative equilibrium price p∗

by significantly jumping up its price, thereby sacrificing profit from the consumers who check the

products of the two firms in exchange for profit from the consumers who only check the deviant’s

product. It is nevertheless possible to provide more general existence results. Intuitively, to rule

out such a deviation, it is necessary that the share of consumers who only check one product is not

very large. In the Appendix we show that when F is quadratic and convex and G is quadratic and

concave, a pure-strategy symmetric equilibrium exists.

4 Higher search costs

We now study how the equilibrium price derived in Proposition 1 depends on the magnitude of search

costs. To do this, we parametrize the search cost density by a scalar β and assume that an increase

in β shifts the search cost distribution downwards, that is, an increase in β signifies an increase in

search costs in the sense of first order stochastic dominance. Let G(c;β) be a parametrized search

14



cost CDF with ∂G(c;β)/∂β < 0 and denote the price equilibrium corresponding to a given β by

p∗(β). We next study how the equilibrium price p∗(β) responds to a change in β.

The first observation we make is that the price in Proposition 1(A), given by the solution to the

FOC in equation (12), is completely independent of a small change in the search cost distribution.

As mentioned above, this is because search costs are so low in this case that they do not restrict

consumers’ search behavior at all and, as a result, all consumers inspect the products of the two

firms in equilibrium.

Cases (B) and (C) of Proposition 1 are more interesting. In both cases, if an equilibrium exists,

the price is given by the solution to the FOC given by equation (9). Because we have parametrized

G by β, let us denote by H(p∗;β) the corresponding parametrized function defined by the FOC in

equation (9). By the implicit function theorem, the comparative statics effect of an increase in search

costs is then given by
dp∗(β)

dβ
= − ∂H

∂β

/
∂H

∂p∗
. (16)

We have already noted above that the denominator of equation (16), ∂H/∂p∗, is negative. We now

study the sign of the numerator of equation (16). For this we now distinguish between cases (B) and

(C) in Proposition 1.

Consider first the situation in Proposition 1(B). In this case, the upper bound of the search

cost distribution is neither too high nor too low, which implies that all consumers inspect at least

one product (i.e., G (c0(p∗), β) = 1) and some consumers inspect the two products (i.e. µ2(p∗) =

1− µ1(p∗) = G(c1(p∗), β) > 0). In such a case, the numerator of equation (16) is

∂H

∂β
= N(p∗)

∂G (c1(p∗), β)

∂β
> 0,

where the sign follows from the facts that D(p∗) < 0 and existence of a candidate equilibrium

implies that N(p∗) < 0. As a result, since ∂H/∂p∗ < 0 and ∂H/∂β > 0, we have demonstrated that

dp∗(β)/dβ > 0. That is, an increase in search costs results in higher prices, which is the standard

result in the consumer search literature. In the present case all consumers search, which implies that

an increase in search costs only affects consumers’ search intensity (the intensive search margin),

and does not affect consumers’ participation (the extensive search margin). When search costs

increase, consumers search less, and prices go up. That consumers search less is reflected here by

G(c1(p∗), β) falling in β, which, by definition, means that the fraction of consumers checking the

two products decreases and, by implication, the fraction of consumers inspecting only one product

increases. Facing fewer consumers who compare the products of the two firms after search costs
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increase and more consumers who only check one of the products, the sellers safely increase their

prices.

Consider now the situation in case (C). In this situation G (c0(p∗), β) < 1 and therefore for the

numerator of equation (16) we have

∂H

∂β
= N(p∗)

∂G (c1(p∗), β)

∂β
−D(p∗)

∂G (c0(p∗), β)

∂β
.

Using the equilibrium condition in equation (9), we can rewrite this as follows:

∂H

∂β
= D(p∗)

G (c0(p∗), β)

G (c1(p∗), β)

∂G (c1(p∗), β)

∂β
−D(p∗)

∂G (c0(p∗), β)

∂β

= D(p∗)

[
G (c0(p∗), β)

G (c1(p∗), β)

∂G (c1(p∗), β)

∂β
− ∂G (c0(p∗), β)

∂β

]
= D(p∗)G (c0(p∗), β)

[
1

G (c1(p∗), β)

∂G (c1(p∗), β)

∂β
− 1

G (c0(p∗), β)

∂G (c0(p∗), β)

∂β

]
. (17)

The sign of ∂H/∂β is therefore ambiguous; it depends on the values that the hazard rate G′β/G takes

at the cutoff points c0(p∗) and c1(p∗), where G′β is short-hand notation for ∂G/∂β. The interesting

issue is that this derivative can be negative, in which case the equilibrium price will decrease when

search costs increase. The next proposition summarizes our findings and provides a sufficient condi-

tion for the equilibrium price to decrease in search costs. We explain the intuition behind this result

after stating it precisely.

Proposition 2 Let G (c;β) be a search cost CDF with positive density on [0, c] and with derivative

∂G(·)/∂β < 0. Then the comparative statics with respect to β of the SNE price of the non-sequential

search duopoly model described in Proposition 1 is as follows:

(A) The equilibrium price given by Proposition 1(A) is independent of β. Therefore, higher search

costs do not have a bearing on the equilibrium price.

(B) The equilibrium price given by Proposition 1(B) unambiguously increases in β. Therefore,

higher search costs always result in higher prices.

(C) The equilibrium price given by Proposition 1(C) decreases in β if and only if

1

G (c1(p∗), β)

∂G (c1(p∗), β)

∂β
− 1

G (c0(p∗), β)

∂G (c0(p∗), β)

∂β
> 0. (18)

Moreover, if G′β/G increases (decreases) in c, then the equilibrium price increases (decreases)

in β. The price is independent of β if G′β/G is constant in c.
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The contrast between the results in parts (B) and (C) of the proposition is important in that

it demonstrates once more that the standard (positive) association between search costs and prices

is based on a restriction on the magnitude of search costs.7 When search costs are initially low, an

increase in search costs only affects the intensive search margin. Consumers face more difficulties

when comparing products, which means they engage in less product comparison. Buyers who stop

comparing products enlarge the group of buyers who do not, and this means an individual firm faces

less elastic demand. Correspondingly, firms adjust their prices upwards.

However, when search costs are not restricted to be initially low, increases in search costs affect

both the intensive and the extensive search margins. At the intensive search margin, the same effect

as before occurs. The share of consumers who used to inspect the two products goes down and this

tends to decrease the elasticity of demand an individual firm faces. However, at the extensive search

margin, more consumers drop out of the market altogether when search costs go up, which changes

the demand composition and the identity of the average consumer. Condition (18) is necessary and

sufficient for an increase in search costs to raise rather than reduce the elasticity of demand; under

this condition, higher search costs result in lower prices. A sufficient condition is that the hazard rate

G′β/G (or the elasticity of G with respect to β) be increasing in search costs. Under those conditions,

an increase in search costs is more noticeable at higher percentiles of the search cost distribution

than at lower, which implies that the effect on the extensive search margin is stronger than the effect

on the intensive search margin.

In order to illustrate these arguments, we refer to Figure 2. In this figure we represent the effect

of an increase in search costs on the intensive and extensive search margins. Initially consumer search

costs are given by the blue search cost distribution. This search cost distribution has the property

that G′β/G is increasing in c.8 The increase in search costs is represented by the shift from the blue

distribution to the red one. As the graph shows, the increase in search costs is much more felt at

the higher percentiles of the search cost distribution.

In Figure 2(a) we represent the case discussed in Proposition 2(B). Before the increase in search

costs, the blue fractions of consumers µ1(p∗) and µ2(p∗) represent the equilibrium fractions of con-

7Moraga-González, Sándor, and Wildenbeest (2017a) present a similar finding for the standard model of sequential
search for differentiated products (cf. Wolinsky, 1986). See also the online Appendix of that paper for an study of non-
sequential search for homogeneous products (cf. Burdett and Just, 1983), as well as Fabra and Reguant (2018), who
study price discrimination in such a setting. It is reassuring to learn that, when the market is not covered, the insight
that prices can increase or decrease in search costs is robust to the search protocol (sequential vs. non-sequential), the
type of product (differentiated vs. homogeneous) and the nature of the market equilibrium (pure vs. mixed strategies).

8We use the Kumaraswamy (1980) distribution in Figure 7 with parameters a = 1, b = 1/2, and upper bound
β = 0.3. In Section 4.2 we formally introduce this distribution and demonstrate that G′β/G is increasing in c for those
parameter values.
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sumers checking one and two products, respectively. Because here search costs are small for all

consumers (c0(p∗) = c), they all check at least one product. Keeping prices constant, an increase in

search costs results in a fall in the number of consumers who inspect the two products and, corre-

spondingly, in an increase in the number of consumers who just check one. This lowers the demand

elasticity so firms find it optimal to raise their prices.

Figure 2(b) shows the case discussed in Proposition 2(C). In this case search costs are sufficiently

large (c0(p∗) < c) and a fraction of consumers µ0(p∗) therefore opts out of the market altogether.

When search costs increase, keeping prices fixed, the share of consumers who do not even start

searching increases substantially. This causes the share of inelastic consumers to fall more than the

share of elastic consumers; this demand composition effect increases overall elasticity of demand, and

firms lower their prices as a result.
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Figure 2: The effect of an increase in search costs

Moraga-González, Sándor, and Wildenbeest (2017a) present a related finding for the standard

model of sequential search for differentiated products (cf. Wolinsky, 1986). They also show that, when

search costs are not restricted to be low, higher search costs may result in a higher or lower equilibrium

price and provide necessary and sufficient conditions for these effects to occur. Mathematically, the

conditions they give is however quite different from that in condition (18). The main distinction

relates to the nature of search in the two different models. While with simultaneous search what

matters for pricing are the relative masses of consumers checking one or two products, with sequential

search the entire density of the various consumer types who search in the market affects price. In

fact, it may happen that a change in search costs will have the opposite effect on equilibrium prices in

the sequential search model than in the simultaneous search model. We now provide two examples.
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Let us start with a situation in which an increase in search costs results in a decrease in the

equilibrium price under simultaneous search and in an increase in the equilibrium price under se-

quential search. We depict this situation in Figure 3. Note that consumer search behavior with the

two search cost distributions depicted in Figure 3(a) is exactly the same as that with the search cost

distributions depicted in Figure 2(b). That is, the corresponding shares of consumers checking one

and two products are exactly the same in the two situations. As a result, the equilibrium prices are

also identical and we know from the discussion above that an increase in search costs leads to a lower

equilibrium price. Hence, although the search cost distributions are quite different in Figures 2(b)

and 3(a), these differences make no impact on pricing under simultaneous search because all firms

care about are the shares of consumers searching one or two times (and do not care about whether

consumers within those shares have higher or lower search costs).
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G(c) G(c) G(c)

μ0(p*)
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(a) Search cost distributions

c1(p*)                  c0(p*)             c

G(c)
G(c)

G(c)~

~
~

(b) Search cost truncated distributions

Figure 3: The effect of an increase in search costs (b)

With sequential search things are quite different. While for the distributions in Figure 2(b)

the equilibrium price would also decrease as search costs increase (since G′β/G is increasing in c),

the opposite holds for the distributions in Figure 3(a). This is because the truncated distributions

corresponding to the two original search cost distributions, which are depicted in Figure 3(b), are also

ranked according to the FOSD order (cf. Proposition 2 in Moraga-González, Sándor and Wildenbeest

(2017)).

The opposite happens for the example in Figure 4. An increase in search costs would lead to a

higher equilibrium price under simultaneous search and to a lower equilibrium price under sequential

search. The first fact follows from the observation that an increase in search costs reduces the share

of consumers comparing the two products and does not affect much the share of consumers checking
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one product only. The second fact from the behaviour of the truncated search cost distributions.
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Figure 4: The effect of an increase in search costs (c)

The observation that an increase in search costs may lead the opposite effect on prices depending

on the search protocol has a major implication for the empirical researcher interested in the under-

standing of the impact of a changes in search costs. Even if a mis-specification of the search protocol

does not bias the estimation of the search cost distribution, counterfactual analysis of lower search

costs may lead to wrong conclusions.

4.1 The reversed hazard rate stochastic ordering

In this section we relate the sufficient condition in Proposition 2(C) to the reversed hazard rate

ordering of distributions (see Shaked and Shanthikumar, 2007), which is a well-known stochastic

ordering.

Definition 1. The distribution G(c;β) has the increasing reversed hazard rate (IRHR) property if

and only if for any β′ < β,

G(c, β)G(d, β′) ≤ G(c, β′)G(d;β)

for any c ≤ d in the union of the supports of G(c, β′) and G(c;β).

We now define distributions for which the reverse property holds, namely, that they have decreas-

ing reversed hazard rates:

Definition 2. The distribution G(c;β) has the decreasing reversed hazard rate (DRHR) property

if and only if for any β′ < β,

G(c, β)G(d, β′) ≥ G(c, β′)G(d;β)
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for any c ≤ d in [0,min {c(β), c(β′)}].9

A few simple calculations reveal that for distributions with IRHR, the ratio G′β/G increases in

c, which is equivalent to the notion of log-supermodularity of the distribution function. On the

contrary, for distributions with DRHR, the ratio G′β/G decreases in c; this is then equivalent to

log-submodularity of the distribution function.

Corollary 1 to Proposition 2C. For log-supermodular (log-submodular) search cost distributions

distributions, a FOSD increase in search costs results in an increase (decrease) in the equilibrium

price given in Proposition 1(C).

We note that the notions of IRHR (log-supermodularity) and DRHR (log-submodularity) take

very simple forms in the common cases of additive and multiplicative shocks to search costs. In the

case of multiplicative shocks, the search cost distribution is G(c/(1 + β)), with β ≥ 0. In this case,

IRHR (DRHR) is identical to cg/G being decreasing (increasing), which is the same as decreasing

(increasing) search cost elasticity of the cumulative distribution function G. In the case of additive

shocks, the search cost distribution is G(c − β), with β ≥ 0. Re-defining the notion of DRHR on

the set [max {c(β), c(β′)} ,min {c(β), c(β′)}] we note then that IRHR (DRHR) is equivalent to g/G

being decreasing (increasing), which is the same as log-concavity (log-convexity) of the distribution

function G.10

4.2 An illustrative example: The Kumaraswamy’s distribution

The Kumaraswamy’s (1980) distribution has a cumulative distribution function G and a probability

distribution function g given by:

G (c) = 1−
[
1−

(
c

β

)a]b
, c ∈ [0, β] , a, b > 0;

g (c) =
ab

β

(
c

β

)a−1 [
1−

(
c

β

)a]b−1

.

The Kumaraswamy distribution is often used as a substitute for the beta distribution (see Ding and

Wolfstetter, 2011). An increase in β signifies an increase in search costs for all consumers. Depending

9Note that we define DRHR up to the minimum of the upper bounds of the supports of the search cost distributions
G(c, β) and G(c, β′). This is needed for compatibility of the DRHR ranking with the FOSD ranking of distributions.

10In Moraga-González, Sándor, and Wildenbeest’s (2017a) model of sequential search for differentiated products,
conditions based on the likelihood ratio ranking of densities are provided for a similar implication. Note that the
likelihood ratio ordering, which relates to the density functions of random variables, is stronger than the reversed
hazard rate ordering, which has to do with the cumulative distribution functions. A consequence of this distinction is
that the implication that for search cost densities satisfying the decreasing likelihood property an increase in search
costs leads to a lower equilibrium price cannot be applied to the case of additive shocks to search costs.
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on the parameter b, this distribution can be log-supermodular (b > 1) or log-submodular (0 < b < 1).

Then, we have the following:

Corollary to Proposition 2 Assume that search costs are distributed on the interval [0, β] according

to the Kumaraswamy distribution. Then:

(A) The equilibrium price in Proposition 1(A) is independent of β.

(B) The equilibrium price in Proposition 1(B) unambiguously increases in β.

(C) For all a, the equilibrium price in Proposition 1(C) decreases in β if 0 < b < 1, is constant

in β if b = 1, and increases in β if b > 1.

5 The N-firm model

The previous simultaneous search model with differentiated products can be generalized to the case

of N > 2 firms. The problem of a consumer with search cost c is to choose a number k of firms to

be sampled in order to maximize her expected utility:

max
k

{∫ ε

p∗
(ε− p∗)kF (ε)k−1f(ε)dε− kc

}
.

It can easily be checked that this problem is well-behaved and that a unique solution exists. Such

a solution defines a partition of the consumer population into groups of buyers µk(p
∗) that search

k = 0, 1, 2, . . . , N firms, with
∑N

k=0 µk(p
∗) = 1; as above, some of these groups may have zero mass

as the upper bound of the search cost distribution decreases.

In order to determine the size of these groups, let us define the critical search cost parameters

c0(p∗) = min

{
c,

∫ ε

p∗
(ε− p∗)f(ε)dε

}
ck(p

∗) = min

{
c,

∫ ε

p∗
(ε− p∗) [(k + 1)F (ε)− k]F (ε)k−1f(ε)dε

}
, k = 1, 2, . . . , N − 1.

The fractions of consumers searching k times are then given by the expressions:

µ0 = 1−G(c0(p∗))

µk = G(ck−1(p∗))−G(ck(p
∗)), k = 1, 2, . . . , N − 1 (19)

µN = G(cN−1(p∗))−G(cN (p∗)) = G(cN−1(p∗)) since cN = 0.

If cN−1(p∗) = c, then all consumers will inspect the N products in equilibrium and the situation

will again resemble the perfect information model of Perloff and Salop (1985). When cN−1(p∗) <
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c = cN−2(p∗), a fraction µN = G(cN−1(p∗)) of consumers will inspect the N products and the

remaining consumers will each check N − 1 randomly selected products. When cN−2(p∗) < c =

cN−3(p∗), a fraction µN = G(cN−1(p∗)) of consumers will inspect the N products, a fraction µN−1 =

G(cN−2(p∗))−G(cN−1(p∗)) will check N−1 products, and the remaining consumers will each inspect

N − 2 randomly selected products. And so on and so forth.

Let zk ≡ max {ε1, ε2, . . . , εk}. In general, the expected payoff of a firm i that deviates from the

symmetric equilibrium price by charging a price pi 6= p∗ is

πi(pi; p
∗) = (pi − r)

(
µ1(p∗)

2
Pr[εi ≥ pi] +

N∑
k=2

kµk(p
∗)

N
Pr [εi − pi ≥ max{zk−1 − p∗, 0}]

)
(20)

As before, the demand of the deviant firm i stems from the various consumer groups, and a consumer

who searches k times compares the offer of firm i with the offers of k − 1 other firms.

For the case where the deviant firm charges a higher price than the rest of the firms, the expression

in equation (20) becomes:11

πi(pi > p∗; p∗) = (pi − r)

[
µ1(p∗)

N
(1− F (pi)) +

N∑
k=2

kµk(p
∗)

N

∫ ε

pi

F (ε− (pi − p∗))k−1f(ε)dε

]
. (21)

Taking the FOC gives:

µ1(p∗)(1− F (pi)) +
N∑
k=2

kµk(p
∗)

∫ ε

pi

F (ε− pi + p∗))k−1f(ε)dε− (pi − r)µ1(p∗)f(pi)

− (pi − r)
N∑
k=2

kµk(p
∗)

(∫ ε

pi

(k − 1)F (ε− pi + p∗)k−2f(ε− pi + p∗)f(ε)dε+ F (p∗)k−1f(pi)

)
= 0.

(22)

After imposing symmetry, simplifying and rearranging we obtain:

µ1(p∗) [1− F (p∗)− (p∗ − r)f(p∗)] +

N∑
k=2

kµk(p
∗)

∫ ε

p∗
F (ε)k−1f(ε)dε

− (p∗ − r)
N∑
k=2

kµk(p
∗)

(∫ ε

p∗
(k − 1)F (ε)k−2f(ε)2dε+ F (p∗)k−1f(p∗)

)
= 0. (23)

In the Appendix we show that a candidate equilibrium p∗ ∈ [r, pm] exists.

Depending on the magnitude of the upper bound of the search cost distribution c, there may

exist N + 1 types of equilibria:

1. When

c ≤
∫ ε

p∗
(ε− p∗) [(N + 1)F (ε)−N ]F (ε)N−1f(ε)dε

11Downward price deviations lead to an expression similar to equation (5).
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then all consumers search the N -firms in the market and the equilibrium price is given by the solution

to the FOC in equation (23) after setting µi(p
∗) = 0 for all i = 1, 2, . . . , N − 1 and µN (p∗) = 1. This

equilibrium exists an is unique, as it is the same as that in Perloff and Salop (1985).

2. When∫ ε

p∗
(ε− p∗) [(N + 1)F (ε)−N ]F (ε)N−1f(ε)dε < c ≤

∫ ε

p∗
(ε− p∗) [NF (ε)− (N − 1)]F (ε)N−2f(ε)dε

then a fraction of consumers µN (p∗) = G(cN−1(p∗)) searches N firms and the rest of the consumers

search N − 1 firms, and the equilibrium price is given by the solution to the FOC in equation (23)

after setting µi(p
∗) = 0 for all i = 1, 2, . . . , N − 2 and replacing µN−1(p∗) and µN (p∗) by their

corresponding values in equation (19).

3. When∫ ε

p∗
(ε−p∗) [NF (ε)− (N − 1)]F (ε)N−2f(ε)dε < c ≤

∫ ε

p∗
(ε−p∗) [(N − 1)F (ε)− (N − 2)]F (ε)N−3f(ε)dε

then a fraction of consumers µN (p∗) = G(cN−1(p∗)) searches N firms, a fraction of consumers

µN−1(p∗) = G(cN−2(p∗)) − G(cN−1(p∗)) searches N − 1 firms and the rest of the consumers search

N − 2 firms, and the equilibrium price is given by the solution to the FOC in equation (23) after

setting µi(p
∗) = 0 for all i = 1, 2, . . . , N − 3 and replacing µN−2(p∗), µN−1(p∗) and µN (p∗) by their

corresponding values in equation (19).

4,5,. . . ,N-1. So on and so forth.

N. When ∫ ε

p∗
(ε− p∗) [2F (ε)− 1]F (ε)f(ε)dε < c ≤

∫ ε

p∗
(ε− p∗)f(ε)dε

then a fraction of consumers µN (p∗) = G(cN−1(p∗)) searches N firms, a fraction of consumers

µk(p
∗) = G(ck−1(p∗)) − G(ck(p

∗)) searches k = 2, 3, . . . , N − 1 firms and the rest of the consumers

search just one firm. In this case the equilibrium price is given by the solution to the FOC (23) after

replacing µ1(p∗), µ2(p∗), . . . , µN (p∗) by their corresponding values in (19).

N+1. Finally, when

c >

∫ ε

p∗
(ε− p∗)f(ε)dε

then a fraction of consumers µN (p∗) = G(cN−1(p∗)) searches N firms, a fraction of consumers

µk(p
∗) = G(ck−1(p∗))−G(ck(p

∗)) searches k = 1, 2, 3, . . . , N − 1 firms and the rest of the consumers

do not search at all. In this case the equilibrium price is given by the solution to the FOC (23) after

replacing µ1(p∗), µ2(p∗), . . . , µN (p∗) by their corresponding values in (19).
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For the candidate price p∗ to be a SNE, the payoff function in (20) must be quasi-concave in pi.

Except in case 1 above, the payoff of a firm consists of the profits derived from the various consumer

groups. Using the well-known aggregation result of Prékopa (1973), it can be shown that each of the

summands of the payoff function in (20) is quasi-concave. However, even if each element of the sum

of payoffs is quasi-concave, the payoff function need not be quasi-concave. Drawing from a recent

contribution by Choi and Smith (2017), we can provide conditions for existence. We do it for the

most general case in which the upper bound of the search cost distribution c is sufficiently large.

The result can easily adapted to prove the existence of equilibrium in alternative situations.

Proposition 3 Suppose there are N firms in the market and that c is sufficiencly large. Then a

candidate market equilibrium exists in which firms charge p∗ and a fraction µk(p
∗), k = 0, 1, 2, ..., N

of consumers checks the products of k firms, where the fractions µk(p
∗) are given by (19). Suppose

that the search cost distribution G is arbitrary and the distribution of match values F is uniform.

Then if N ≤ 8 an equilibrium surely exists, while if N is arbitrary an equilibrium surely exists

whenever r > N−3
N+1ε.

Proof. See the Appendix.

Our proof builds on the novel insight by Choi and Smith (2017) that the weighted sum of quasi-

concave functions is also quasi-concave if the increasing part of each is more risk averse than any

decreasing part. To apply this result in our setting, we first verify that each of the summands in the

payoff (20) is quasi-concave. After this, for two arbitrary summands, we identify the set of prices for

which one summand is increasing and the other is decreasing. Finally, we show that the Choi and

Smith’s condition holds when either the number of firms is sufficiently low or the marginal cost is

sufficiently large.12

We now turn to the question of how the equilibrium price is affected by an increase in search costs.

To study how an increase in search costs affects the equilibrium price we proceed by solving the model

numerically. We again focus on the most novel case, i.e. where search costs are sufficiently large so

that not all consumers search in equilibrium. Assuming that search costs follow the Kumaraswamy

distribution with upper bound β, we set a = 1, pick β sufficiently high so that all fractions of

consumers defined above in equation (19) are strictly positive, and compute the price equilibrium

and search intensities for various levels of the parameter b. For the case N = 2, our Proposition 2

12In our working paper, we provide evidence based on numerical solutions of the N -firm model using the Ku-
maraswamy distribution that higher search costs result in a lower, equal or higher equilibrium price exactly as in the
duopoly case of Section 4.2.
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shows mathematically that, after an increase in search costs, prices go down when the parameter b

of the Kumaraswamy search cost distribution is less than 1; for b = 1, prices do not change; while for

b > 1, prices increase. Table 1 shows that the same results are obtained in a market where N = 5,

r = 0, and match values are uniformly distributed on the set [0, 1].

b = 1.5 b = 1.00 b = 0.5
β = 1 β = 2 β = 3 β = 1 β = 2 β = 3 β = 1 β = 2 β = 3

µ0 0.7008 0.8467 0.8970 0.7910 0.8955 0.9303 0.8905 0.9465 0.9646
µ1 0.1251 0.0651 0.0439 0.0900 0.0450 0.0300 0.0484 0.0233 0.0153
µ2 0.0668 0.0341 0.0228 0.0463 0.0231 0.0154 0.0241 0.0118 0.0078
µ3 0.0370 0.0187 0.0125 0.0253 0.0126 0.0084 0.0129 0.0064 0.0042
µ4 0.0216 0.0108 0.0072 0.0146 0.0073 0.0048 0.0074 0.0036 0.0024
µ5 0.0484 0.0243 0.0162 0.0325 0.0162 0.0108 0.0163 0.0081 0.0054

p∗ 0.3504 0.3521 0.3526 0.3536 0.3536 0.3536 0.3567 0.3551 0.3545
π 0.0171 0.0087 0.0059 0.0120 0.0060 0.0040 0.0062 0.0030 0.0020
CS 0.0792 0.0402 0.0269 0.0544 0.0272 0.0181 0.0280 0.0138 0.0091
CS/(1− µ0) 0.2647 0.2626 0.2619 0.2606 0.2606 0.2606 0.2566 0.2587 0.2593
Welfare 0.1650 0.0842 0.0565 0.1144 0.0572 0.0381 0.0595 0.0291 0.0193

Table 1: Simultaneous search for differentiated products: price equilibrium and search intensities
(Kumaraswamy distribution, a = 1)

The table also illustrates the impact of higher search costs on profits, consumer surplus, and

welfare. What we see is that, even if higher search costs result in lower prices, consumer surplus goes

down in search costs. This is clearly due to the impact higher search costs have on the extensive

search margin, which is of first order. In fact, notice that conditional on searching, consumers benefit

from higher search costs only because prices fall.

Another interesting result is that firm profits always decrease when search costs increase, even

if prices go up. Once again, this is due to the impact of higher search costs on the extensive search

margin.

6 Non-uniform sampling

Hortaçsu and Syverson (2004), De los Santos, Hortaçsu, and Wildenbeest (2012), and De los Santos

(2018) have observed empirically that some firms are more salient than others and because of this

consumers are more likely to encounter them when they search. In this section, we explore the

implications of non-uniform sampling for pricing, firm profits and consumer surplus. In addition,

we show that our results about the effect of higher search costs on the equilibrium price do not

qualitatively depend on the assumption that firms are equally likely to be sampled.

Assume now that one of the firms, say firm 1, is more likely to be sampled than the other firm.
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Let α be the probability with which a consumer who searches once comes across the offer of firm 1,

with α ≥ 1/2. Correspondingly, 1 − α is the probability with which a consumer who searches once

finds the offer of firm 2. Naturally, the case of α = 1/2 corresponds to the symmetric model we have

analyzed so far.

Let p∗1 and p∗2 be the equilibrium prices of the firms. For α different from 1/2, the firms will have

asymmetric demands so we expect these prices to be different from one another.

6.1 Consumer search

We next characterize optimal consumer search behavior. As in the previous section, consider a

consumer with search cost c that chooses to inspect only one product. The expected utility the

consumer derives from searching once is:

U(1, c) = αPr[ε1 ≥ p∗1]E[ε1 − p∗1|ε1 ≥ p∗1] + (1− α)Pr[ε2 ≥ p∗2]E[ε2 − p∗2|ε2 ≥ p∗2]− c

= α

∫ ε̄

p∗1

(z − p∗1)f(z)dz + (1− α)

∫ ε̄

p∗2

(z − p∗2)f(z)dz − c, (24)

where we have taken into account that with probability α the consumer will end up inspecting the

product of firm 1, and with probability 1− α the product of firm 2.

To compute the cutoff c0 above which consumers will not search, we equalize the utility from

searching once to the utility from not searching at all, which is zero, and solve for the corresponding

critical search cost. Because such a cutoff may be higher than the upper bound of the search cost

distribution, we define c0 as:

c0(p∗1, p
∗
2) ≡ min

{
c, α

∫ ε̄

p∗1

(z − p∗1)f(z)dz + (1− α)

∫ ε̄

p∗2

(z − p∗2)f(z)dz

}
.

Notice that c0(·) is (potentially) a function of the prices of the two firms. The share of consumers

not searching in the market is then:

µ0(p∗1, p
∗
2) = 1−G(c0(p∗1, p

∗
2)), (25)

which can of course be equal to zero when c is low enough.

We now compute the share of consumers searching once. To do this, we look for the search cost

of the consumer indifferent between searching once and searching twice. The expected utility from

searching twice, denoted U(2), is given by:

U(2, c) = Pr[max{ε1−p∗1, ε2−p∗2} ≥ 0]E[max{ε1−p∗1, ε2−p∗2}|max{ε1−p∗1, ε2−p∗2} ≥ 0]−2c. (26)
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Equating equation (24) to equation (26) and solving for the search cost gives the critical search

cost value above which it is worth to search once and not twice. Because this critical search cost

may be greater than the upper bound of the search cost distribution, we define c1 as:

c1(p∗1, p
∗
2) ≡ min

{
c

∫ max{ε̄−p∗1,ε̄−p∗2}

0
z[f(z + p∗1)F (z + p∗2) + F (z + p∗1)f(z + p∗2)]dz − α

∫ ε̄−p∗1

0
zf(z + p∗1)dz

−(1− α)

∫ ε̄−p∗2

0
zf(z + p∗2)dz

}
.

Assuming that p∗1 > p∗2, something that we later check it holds in equilibrium, we have:

c1(p∗1, p
∗
2) ≡ min

{
c,

∫ ε̄−p∗2

0
z[f(z + p∗1)F (z + p∗2) + F (z + p∗1)f(z + p∗2)]dz − α

∫ ε̄−p∗1

0
zf(z + p∗1)dz

−(1− α)

∫ ε̄−p∗2

0
zf(z + p∗2)dz

}
.

The share of consumers searching once is then

µ1(p∗1, p
∗
2) = G(c0(p∗1))−G(c1(p∗1, p

∗
2)), (27)

which again can be equal to zero when c is sufficiently small, and the share of consumers searching

twice is

µ2(p∗1, p
∗
2) = G(c1(p∗1, p

∗
2)). (28)

6.2 Payoffs of the firms

We now move to the problem of the firms. We start by deriving the payoff of the firms when they

deviate from equilibrium pricing. Consider first firm 1, the most salient firm. The expected payoff

to firm 1 when deviating by charging a price p1 6= p∗1 is:

π1(p1; p∗1, p
∗
2) = (p1 − r)

(
α
µ1(p∗1, p

∗
2)

2
Pr[ε1 ≥ p1] + µ2(p∗1, p

∗
2) Pr [ε1 − p1 ≥ max{ε2 − p∗2, 0}]

)
.

When firm 1 deviates but still charges a higher price than the rival’s price so p1 > p∗2, this payoff can

be written as follows:

π1(p1; p∗1, p
∗
2) = (p1 − r)

(
α
µ1(p∗1, p

∗
2)

2
(1− F (p1)) + µ2(p∗1, p

∗
2)

∫ ε

p1

F (ε− (p1 − p∗2))f(ε)dε

)
. (29)

Notice that this payoff is similar to that in equation (5) although there are differences: one difference

is that firm 1 now obtains a share α of the consumers who search once; the other difference is that

now the shares of consumers searching once and twice depend on both equilibrium prices.

28



The FOC, after applying symmetry between the deviation price and consumer expectations, is:

α
µ1(p∗1, p

∗
2)

2
(1− F (p∗1)) + µ2(p∗1, p

∗
2))

∫ ε

p∗1

F (ε− p∗1 + p∗2) f (ε) dε

− (p∗1 − r)

[
α
µ1(p∗1, p

∗
2)

2
f(p∗1) + µ2(p∗1, p

∗
2)

(∫ ε

p∗1

f (ε− p∗1 + p∗2) f (ε) dε+ F (p∗2)f(p∗1)

)]
= 0 (30)

Consider now firm 2, the least salient firm. The expected payoff to the least salient firm when

deviating by charging a price p2 6= p∗2 is:

π2(p2; p∗1, p
∗
2) = (p2 − r)

(
(1− α)

µ1(p∗1, p
∗
2)

2
Pr[ε2 ≥ p2] + µ2(p∗1, p

∗
2) Pr [ε2 − p2 ≥ max{ε1 − p∗1, 0}]

)
.

When p∗1 > p2 > p∗2, this payoff can be written more compactly as

π2(p2; p∗1, p
∗
2) = (p2 − r)

(
(1− α)

µ1(p∗1, p
∗
2)

2
(1− F (p2)) + µ2(p∗1, p

∗
2)

∫ ε

p2

F (ε− (p2 − p∗1))f(ε)dε

)
.

The FOC, after applying symmetry between the deviation price and consumer expectations is:

(1− α)
µ1(p∗1, p

∗
2)

2
(1− F (p∗2)) + µ2(p∗1, p

∗
2)

∫ ε

p2

F (ε− (p∗2 − p∗1))f(ε)dε

− (p∗2 − r)

[
(1− α)

µ1(p∗1, p
∗
2)

2
f(p2) + µ2(p∗1, p

∗
2)

(∫ ε

p∗2

f(ε− p∗2 + p∗1)f(ε)dε+ F (p∗1)f(p∗2)

)]
= 0

(31)

6.3 Price equilibrium with non-uniform sampling

Computing a price equilibrium requires solving the system of FOCs given by equations (30)-(31) for

p∗1 and p∗2, after factoring the expressions for µ1(p∗1, p
∗
2) and µ2(p∗1, p

∗
2) given in equations (27)-(28).

Unfortunately, the resulting system of equations is extremely complicated to deal with. To make

further progress, let us assume that match values and search costs are uniformly distributed on [0, 1]

and [0, c], respectively.

We now note than when the upper bound of the search cost distribution is small enough so that

c1(p∗1, p
∗
2) = c0(p∗1, p

∗
2) = c, then non-uniform sampling does not affect the price equilibrium. The

reason is that all consumers find it worthwhile to sample the two products and the price equilibrium

is again the same as in Perloff and Salop (1985). In what follows, therefore, we focus on situations

where not all consumers search twice.

Consider first the case in which c is neither too low nor too high so that all consumers participate

in the market. We will later characterize the region of search costs upper bounds for which this is

true. In such a case,

c1(p∗1, p
∗
2) =

1

6

(
(1− p∗2)2(1 + 3p∗1 − p∗2) + 3α(p∗1 − p∗2)(2− p∗1 − p∗2)

)
,
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and it holds that c1(p∗1, p
∗
2) < c0(p∗1, p

∗
2) = c. The corresponding share of consumers inspecting one

of the products is

µ1(p∗1, p
∗
2) = 1− 3α(p∗1 − p∗2)(2− p∗1 − p∗2) + (1− p∗2)2(1 + 3p∗1 − p∗2)

6c
,

and, obviously, µ2(p∗1, p
∗
2) = 1− µ1(p∗1, p

∗
2) is the share of consumers inspecting the two products.

The profits of the firms can then be written as:

π1(p1; ·) =
(1− p1)p1 [2α+ (1− 2α− p∗1 + 2p∗2) (1− µ1(p∗1, p

∗
2))]

2
;

π2(p2; ·) =
(1− p2)p2 [2(1− α)− (1− 2α− 2p∗1 + p2) (1− µ1(p∗1, p

∗
2))]

2
.

Armstrong, Vickers, and Zhou (2009) have studied the special case in which one of the firms is

prominent, which is obtained when setting α = 1. For such a case, the corresponding FOCs for

profits maximization are given by:

1− 2p∗1 −

[
3p∗

2

1 − 4p∗1p
∗
2 + 2p∗2 − 1

] [
3p∗21 + 3p∗1((1− p∗2)p∗2 − 3) + (3− p∗2)2p∗2 − 1

]
12c

= 0; (32)

[p∗1(4p∗2 − 2) + p∗2(4− 3p∗2)− 1]
[
3p∗21 + 3p∗1((1− p∗2)p∗2 − 3) + (3− p∗2)2p∗2 − 1

]
= 0. (33)

We can demonstrate the following result:

Proposition 4 Assume that one of the firms, say firm 1, is prominent, that is α = 1. Also assume

that match values and search costs are uniformly distributed on [0, 1] and [0, c], respectively. Then,

for any

c ∈

(
8
√

2− 11

3
,
1

8
+

1

18
√

3

]
,

there exists a unique price equilibrium (p∗1, p
∗
2) in pure-strategies given by the solution to the system

of equations (32)-(33). In equilibrium, all consumers search; in particular, a share µ1(p∗1, p
∗
2) inspect

the product of the prominent firm only, and the rest check the two products. The equilibrium prices

satisfy the inequality

p∗2 < p∗1 < p∗,

where p∗ is the symmetric equilibrium price. As a result, market prominence increases consumer

surplus.
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Proof. See the Appendix.

Proposition 4 shows that prominence, that is, an extreme case of non-uniform sampling, increases

consumer surplus. The intuition behind this result is as follows. When one firm is more likely to

be visited by the consumers who inspect just one product, this firm’s pool of consumers becomes

less elastic compared to the symmetric equilibrium situation. As a result, a firm that becomes more

salient in the market tends to increase its price. By contrast, the rival firm’s pool of consumers

becomes more elastic compared to the symmetric equilibrium because there are disproportionately

more consumers willing to inspect the two products of the firms. Thus, for this firm the situation

is the opposite and hence it tends to decrease its price. In the limit case of Proposition 4 in which

one firm is prominent, the reduction in the price of the non-prominent firm is so strong that the

prominent firm also decreases its price. As a result, consumer surplus increases.

The insight in Proposition 4 that consumers gain from non-uniform sampling situations is not

unique to the case α = 1. However, for arbitrary α, it is very hard to prove this finding because the

corresponding FOCs given by equations (30)-(31) are very difficult to analyze. We therefore proceed

by solving the model numerically.

In Figure 5(a) we plot the equilibrium prices against the non-uniform sampling probability α.

For α = 1/2 we get the symmetric equilibrium p∗, which is depicted by the dashed line. The graph

reveals that, as α increases, the salient firm first raises its price above the symmetric price but

eventually decreases it, while the non-salient firm decreases it for any value of α > 0.5. Around the

α = 1/2 case, the decrease of the non-salient firm’s price is however quite sharp in comparison to the

increase in the price of the salient firm. Despite the fact that consumers visit the salient firm with

higher probability, on balance, this is good for consumers. In equilibrium, thus, they tend to search

more, which can be seen in Figure 5(b). We plot the equilibrium profits in Figure 5(c). The profits

of the salient firm increase as α goes up, while the non-salient firm’s profits decrease. However, the

increase in the profits of the salient firm is stronger than the decrease in the profits of the non-salient

firm so the joint profits of the two firms rise. We plot consumer surplus in Figure 5(d) together

with industry profits, and social welfare. We conclude that industry profits, consumer surplus, and

welfare with non-uniform sampling are higher than with random search.

Consider now the case in which c is sufficiently high so that not all consumers participate in the

market. In this case, we can repeat the numerical exercise above to show similar insights. In Figure

6(a) we plot the equilibrium prices against the non-uniform sampling probability α. The graph

31



p1
*

p2
*

p*

0.5 0.6 0.7 0.8 0.9 1.0
Α

0.41

0.42

0.43

0.44

0.45

p1
*,p2

*

(a) Equilibrium prices

Μ1

Μ2

0.5 0.6 0.7 0.8 0.9 1.0
Α

0.2

0.4

0.6

0.8

1.0

Μ1 ,Μ2

(b) Search

Π1
*

Π2
*

Π1
*

+Π2
*

0.5 0.6 0.7 0.8 0.9 1.0
Α

0.1

0.2

0.3

0.4

Π1
*
,Π2

*

(c) Firms’ profits

CS

W

Π1
*

+Π2
*

0.5 0.6 0.7 0.8 0.9 1.0
Α

0.1

0.2

0.3

0.4

0.5
CS

(d) Consumer surplus, industry profits, and social wel-
fare

Figure 5: The effect of non-uniform sampling

reveals the same pattern as before: as α increases, the salient firm first raises its price above the

symmetric price and then lowers it, while the non-salient firm decreases it. As before, the decrease

of the non-salient firm’s price is however quite sharp in comparison to the increase in the price of

the salient firm. Despite the fact that consumers visit the salient firm with higher probability, on

balance, this is good for consumers. This is seen in Figure 6(b), where we plot the shares of consumers

searching once and twice. As shown in this figure, consumer participation goes up as α increases.

Figure 6(c) shows the profits of the firms. The salient firm increases is profits as it becomes more

salient, while the non-salient firm decreases its profits. As before, joint industry profits increase as

sampling probabilities become more unequal. Figure 6(d) plots consumer surplus, joint profits, and

social welfare. Again, with non-uniform sampling welfare is higher than with random search.

We finally show that our results regarding the effects of higher search costs also hold with non-

uniform sampling. For this, let us assume that match values are uniformly distributed on [0, 1] and

that search costs are distributed on the interval [0, β] according to the Kumaraswamy distribution.
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fare

Figure 6: The effect of non-uniform sampling (market not fully covered)

Let us assume that β is sufficiently high. Table 2 shows the market equilibrium for three values

of the (unequal) sampling probability α as well as different values of the parameter b of the search

cost distribution. When b = 1, the equilibrium price does not depend on β; when b = 1.5, the the

equilibrium price increases in β; finally, when b = 0.5, the equilibrium price decreases in β.

7 Conclusions

This paper has extended the literature on simultaneous search by allowing for differentiated products

and consumer search cost heterogeneity. While such a framework has been the basis for a number of

empirical applications in recent years, with the exception of Anderson, De Palma, and Thisse (1992),

models of simultaneous search for differentiated products have not received much attention in the

theoretical literature to date.

In contrast to Anderson, De Palma, and Thisse (1992) where all consumers have the same search

cost, in our paper consumers choose to inspect different numbers of products before buying. The
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α = 1/2
b = 1.5 b = 1.00 b = 0.5

β = 1 β = 2 β = 3 β = 1 β = 2 β = 3 β = 1 β = 2 β = 3
µ0 0.7733 0.8843 0.9224 0.8429 0.9214 0.9476 0.9183 0.9599 0.9734
µ1 0.0825 0.0426 0.0287 0.0586 0.0293 0.0195 0.0312 0.0151 0.0099
µ2 0.1441 0.0729 0.0488 0.0983 0.0491 0.0327 0.0503 0.0248 0.0165
p∗1, p

∗
2 0.4387 0.4391 0.4392 0.4395 0.4395 0.4395 0.4402 0.4398 0.4397

π1, π2 0.0356 0.0181 0.0121 0.0246 0.0123 0.0082 0.0127 0.0062 0.0041
α = 2/3

b = 1.5 b = 1.00 b = 0.5
β = 1 β = 2 β = 3 β = 1 β = 2 β = 3 β = 1 β = 2 β = 3

µ0 0.7719 0.8836 0.9219 0.8418 0.9209 0.9472 0.9177 0.9596 0.9733
µ1 0.0738 0.0381 0.0257 0.0525 0.0262 0.0175 0.0279 0.0135 0.0089
µ2 0.1542 0.0781 0.0523 0.1056 0.0528 0.0352 0.0542 0.0267 0.0177
p∗1 0.4401 0.4405 0.4406 0.4408 0.4408 0.4408 0.4415 0.4411 0.4410
p∗2 0.4306 0.4309 0.4310 0.4311 0.4311 0.4311 0.4316 0.4314 0.4313
π1 0.0391 0.0199 0.0133 0.0271 0.0135 0.0090 0.0141 0.0069 0.0045
π2 0.0334 0.0170 0.0114 0.0230 0.0115 0.0076 0.0119 0.0058 0.0038

α = 1
b = 1.5 b = 1.00 b = 0.5

β = 1 β = 2 β = 3 β = 1 β = 2 β = 3 β = 1 β = 2 β = 3
µ0 0.7730 0.8841 0.9222 0.8425 0.9212 0.9475 0.9180 0.9598 0.9734
µ1 0.0525 0.0270 0.01823 0.0371 0.0185 0.0123 0.0197 0.0095 0.0063
µ2 0.1744 0.0887 0.0594 0.1202 0.0601 0.040 0.0622 0.0305 0.0202
p∗1 0.4383 0.4386 0.4386 0.4388 0.4388 0.4388 0.4392 0.4390 0.4389
p∗2 0.4167 0.4168 0.4168 0.4168 0.4168 0.4168 0.4168 0.4168 0.4168
π1 0.0428 0.0219 0.01470 0.0298 0.0149 0.0099 0.0155 0.0076 0.0050
π2 0.0309 0.0157 0.0105 0.0213 0.0106 0.0071 0.0110 0.0054 0.0035

Table 2: non-uniform sampling: search intensities, prices, and profits (Kumaraswamy distribution,
a = 1)

consumer equilibrium is thus a partition of the set of consumers into subsets of buyers inspecting

k products, k = 0, 1, 2, . . . , N . Consequently, the aggregate demand of a typical firm stems from

the demands of these distinct consumer groups. The more products inspected, the more price

sensitive the consumer is. Absent the possibility of price discrimination, this poses a complicated

pricing problem. For duopoly and triopoly, we have shown that when the search cost distribution

is arbitrary and distribution of match values is uniform, the pricing problem is well behaved and a

pure strategy Nash equilibrium always exists in this model. For the duopoly case, we have provided

more general conditions under which a pure strategy equilibrium exists.

We have also studied the effects of increasing search costs on the equilibrium price. The typical

assumption in the existing literature is that all consumers search or, equivalently, that all consumers

have sufficiently low search costs. With arbitrary search cost heterogeneity, this assumption is, at the

very least, questionable. We have shown that, depending on the nature of the search cost distribution,

an increase in the search costs of all consumers may result in a lower or in a higher equilibrium price.

The key to understanding this result is to recognize that an increase in search costs changes the

composition of demand. When search costs increase, some consumers cease to buy. If there are
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relatively many of these consumers, the remaining consumers may on average be more elastic than

before. We have first derived a necessary and sufficient condition for the equilibrium price to decrease

(increase) in search costs. We have then shown that for distributions with the decreasing (increasing)

reversed hazard rate property, which is equivalent to log-submodularity (log-supermodularity) of the

cumulative distribution function, the equilibrium price will decrease (increase) as the costs of search

of all consumers rise.

We have examined two extensions of the model. In the first extension, we have considered the

case of N firms. We have characterized the symmetric pure-strategy equilibrium price and provided

an existence result. Moreover, we have shown, using numerical methods, that the insights from the

duopoly model regarding the effects of higher search costs generalize to the case of oligopoly. In

the second extension, we have introduced non-uniform sampling, that is, the idea that some firms

are more salient than others in the marketplace and therefore their products are more likely to be

inspected by consumers than those of the rest of the firms. We have focused on the special case in

which one of the firm products is prominent, that is, it is always inspected by the consumers who

choose to inspect only one item. We have shown that the prominent firm charges a higher price than

the rival firm. Moreover, the equilibrium prices of both firms are below the symmetric equilibrium

price. Thus, market prominence works in favor of consumers. These results generalize to weaker

forms of market saliency. Finally, as in the case with symmetric firms, we have verified numerically

that when not all consumers choose to search in equilibrium, both prices can increase or decrease

depending on the nature of the search cost density.
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Appendix

Proof of Proposition 1. (A) If all consumers search both firms, the payoff function in equation

(6) coincides with that in Perloff and Salop (1985):

πi(pi > p∗; p∗) = (pi − r)
∫ ε

pi

F (ε− pi + p∗)f(ε)dε.

From Caplin and Nalebuff (1991) we know that under log-concavity of f , this payoff function is

quasi-concave in pi and therefore p∗ is the unique symmetric equilibrium price. In order for all

consumers to search twice, we need that c1(p∗) = c, which is guaranteed under condition (13).

(B and C) When c is relatively large some consumers search once and some search twice. In

such a case, the candidate equilibrium price is given by the solution to equation (9). We now note

that the payoff in equation (6) involves the sum of two log-concave functions. Unfortunately, such

a sum need not be quasi-concave, which implies that we need to impose additional restrictions on

the primitives of the model in order to guarantee the existence of a pure-strategy equilibrium.13 We

now show that when the match values follow a uniform distribution, the payoff function in equation

(6) is strictly concave. The second order derivative of equation (6) is:

d2πi (pi > p∗)

dp2
i

= −2
µ1(p∗)

2
f(pi)− 2µ2(p∗)

(∫ ε

pi

f (ε− pi + p∗) f (ε) dε+ F (p∗)f(pi)

)
− (pi − r)

[
µ1(p∗)

2
f ′(pi)− µ2(p∗)

(∫ ε

pi

f ′ (ε− pi + p∗) f (ε) dε

+f(p∗)f(pi)− F (p∗)f ′(pi)

)]
(34)

where f ′ denotes the derivative of f .

For the uniform distribution, we have F (ε) = ε/ε, f(ε) = 1/ε, and f ′(ε) = 0. Plugging these

values in equation (34) and simplifying gives:

d2πi (pi > p∗)

dp2
i

= −µ1(p∗)

ε
− 2µ2(p∗)

(
ε− pi
ε2 +

p∗

ε2

)
+ (pi − r)µ2(p∗)

1

ε2 ;

= −εµ1(p∗) + µ2(p∗)(2ε− 3pi + 2p∗ + r)

ε2 ,

13This problem is quite common in search models where demand stems from various consumer types. For example,
in the sequential search model of Anderson and Renault (1999) demand stems from consumers who happen to visit a
firm for the first time, and from consumers who happen to walk away from a firm and later return to it to conduct a
purchase. In their model, assuming that the density of match values f is increasing ensures existence and uniqueness
of equilibrium.
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which is clearly negative because pi cannot be greater than the monopoly price, which in this case

of the uniform distribution is given by pm = (ε+ r)/2. In a similar way, we can compute the second

order condition for prices pi < p∗, which gives

d2πi (pi < p∗)

dp2
i

= −1

ε
(µ1(p∗) + 2µ2(p∗)) < 0.

Because of strict concavity of the payoff function, we conclude that the equilibrium exists and is

unique.

In order for consumers to search as prescribed in Proposition 1(B), we need that c1(p∗) < c <

c0(p∗), which is guaranteed under condition (14). Finally, for consumers to search as prescribed in

Proposition 1(C), we need that c0(p∗) < c, which gives condition (15). �

Existence of equilibrium when F and G are quadratic.

The symmetric equilibrium of Proposition 1,B,C exists when F is quadratic and convex and G

is quadratic and concave. To see this, we first note that f ′ > 0 ensures that the payoff (5) is strictly

concave for pi < p∗. This is because the second derivative of demand when pi < p∗ is:

−f ′(pi)
[
µ1(p∗)

2
+ µ2(p∗)F (p∗)

]
− µ2(p∗)

∫ ε+pi−p∗

pi

f(ε− pi + p∗)f ′(ε)dε,

which is clearly negative for pi > p∗. We now show that the payoff (6) is quasi-concave for pi > p∗.

To demonstrate this, we first write the demand corresponding to the payoff (6) as an integral:

di(pi > p∗; p∗) =

∫ ε

pi

[
µ1(p∗)

2
+ µ2(p∗)F (ε− pi + p∗)

]
f(ε)dε.

From Prékopa (1973), this demand is log-concave in pi if the term in square brackets is log-concave

both in pi and ε because the product of log-concave functions is log-concave and integration with

respect to ε preserves log-concavity. Taking logarithms of the term in square brackets and writing

out the Hessian matrix, it is readily seen that(
µ1 (p∗)

2µ2 (p∗)
+ F (ε− pi + p∗)

)
f ′ (ε− pi + p∗)− f2 (ε− pi + p∗) < 0 (35)

suffices for log-concavity in pi and ε. Consider that match values are distributed on [0, ε] according

to the quadratic and convex distribution function:

F (ε) =
2− aε2

2ε
ε+

a

2
ε2, with a <

6− 4
√

2

ε2 . (36)
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Assume for the moment that µ1 (p∗) < 2µ2 (p∗). Later we will provide conditions under which this

is true. If this is so, the expression on the LHS of (35) is less than:

2f ′ (ε− pi + p∗)− f2 (ε− pi + p∗) = 2a−
(

2− aε2

2ε
+ aε

)2

< 2a−
(

2− aε2

2ε

)2

.

The last expression is increasing in a so if it is negative for the highest admissible a then it is always

negative. Substituting a = 6−4
√

2
ε2

gives:

2a−
(

2− aε2

2ε

)2
∣∣∣∣∣
a= 6−4

√
2

ε2

= 0

so we conclude that (35) is negative.

It remains to find conditions under which µ1 (p∗) < 2µ2 (p∗) which, using equation (3), is equiv-

alent to:

G(c0(p∗))− 3G(c1(p∗)) < 0, (37)

where, using the distribution of match values in (36), the expressions for c0(p∗) and c1(p∗) are:

c0(p∗) =
(ε− p∗)2(aε(ε+ 2p∗) + 6)

12ε

c1(p∗) = −
(ε− p∗)2

[
40p∗ − ε

(
a2ε(ε− p∗)

(
ε2 + 3εp+ 6p∗2

)
− 30ap∗2 − 20

)]
120ε2

Consider the quadratic and concave search cost distribution:

G (c) =
1 + bc2

c
c− bc2, with 0 < b < 1/c2.

Using this distribution to find parameters under which the inequality (37) holds is unfortunately

intractable. Intuitively, the inequality tends to be satisfied when the curvature of the search cost

distribution is higher. Therefore, let us take the case in which b = 1/c2. Normalizing ε = c = 1, we

can write

120

(1− p∗)2
[G(c0(p∗))− 3G(c1(p∗))] =

1

40

(
a2(1− p∗)

(
6p∗2 + 3p∗ + 1

)
+ 30ap∗2 + 40p∗ + 20

)
·(

a2
(
6p∗2 + 3p∗ + 1

)
(1− p∗)3 + 30ap∗2(1− p∗)2 − 20

(
p∗2(3− 2p∗) + 11

))
+ 10(2ap∗ + a+ 6)

(
2− 1

12
(1− p∗)2(2ap∗ + a+ 6)

)
We can check the sign of this expression by plotting it in the admissible space (a, p∗) ∈

(
0, 6−4

√
2

ε2

)
×

(0, 1/2):
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Figure 7: Plot of inequality (37)

The plot reveals that inequality (37) holds, which completes the proof of the claim. �

Proof of Corollary of Proposition 2.

Parts (A) and (B) do not need any further clarification. Regarding part (C), we now show that,

for any a and β, the Kumaraswamy distribution is log-supermodular for b > 1 and log-submodular

for 0 < b < 1. The case of b = 1 is special in that the distribution is both log-supermodular and

log-submodular; in that case the equilibrium price remains constant as search costs increase.

Note that for the Kumaraswamy distribution it holds that

∂G (c;β)

∂β
= −ab

β

(
c

β

)a(
1−

(
c

β

)a)b−1

< 0;

correspondingly, the hazard ratio G′β/G is

G′β (c;β)

G (c;β)
= −

ab
β

(
c
β

)a (
1−

(
c
β

)a)b−1

1−
[
1−

(
c
β

)a]b . (38)

We now let

t ≡ 1−
(
c

β

)a
.

Note that t ∈ (0, 1) and that t is monotonically decreasing in c. We can rewrite equation (38) as

G′β
G

= −ab(1− t)t
b−1

β(1− tb)
,

and then take the derivative of G′β/G with respect to t. This gives

d[G′β/G]

dt
= −abt

b−2(b− 1− bt+ tb)

β(1− tb)2
.

We now argue that this derivative is negative for all b > 1 and positive for all 0 < b < 1.

Consider first the b > 1 case. Let h (t) ≡ b − 1 − bt + tb. Then h (0) = b − 1 > 0, h (1) = 0, and
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h′ (t) = −b
(
1− tb−1

)
< 0. So h is monotonically decreasing and hence h (t) > 0 for any t ∈ (0, 1).

As a result, G′β/G decreases in t (and thus increases in c). By Proposition 2, this implies that when

condition (15) holds, for the Kumaraswamy family of search cost distributions with parameter b > 1,

the equilibrium price increases as search costs rise.

Second, assume 0 < b < 1. In this case we have h (0) = b − 1 < 0, h (1) = 0 and h′ (t) =

−b
(
1− tb−1

)
> 0. Hence h (t) < 0 for any t ∈ (0, 1) . As a result, G′β/G increases in t (and therefore

decreases in c). By Proposition 2, this implies that when condition (15) holds, for the Kumaraswamy

family of search cost distributions with parameter 0 < b < 1, the equilibrium price decreases as search

costs go up.

For completeness, let b = 1. Plugging b = 1 in (38) gives G′β/G = −a/β, which is constant in c

and therefore the equilibrium price when condition (15) holds does not vary with β. �

Proof of Proposition 3.

We first prove that a candidate equilibrium price p∗ ∈ [r, pm] exists in the N-firm simultaneous

search model with differentiated products. For the case where the deviant firm charges a higher price

than the rest of the firms, the expression in equation (20) becomes:14

πi(pi > p∗; p∗) = (pi − r)

[
µ1(p∗)

N
(1− F (pi)) +

N∑
k=2

kµk(p
∗)

N

∫ ε

pi

F (ε− (pi − p∗))k−1f(ε)dε

]
. (39)

Taking the FOC gives:

µ1(p∗)(1− F (pi)) +
N∑
k=2

kµk(p
∗)

∫ ε

pi

F (ε− pi + p∗))k−1f(ε)dε− (pi − r)µ1(p∗)f(pi)

− (pi − r)
N∑
k=2

kµk(p
∗)

(∫ ε

pi

(k − 1)F (ε− pi + p∗)k−2f(ε− pi + p∗)f(ε)dε+ F (p∗)k−1f(pi)

)
= 0.

(40)

After imposing symmetry, simplifying and rearranging we obtain:

µ1(p∗) [1− F (p∗)− (p∗ − r)f(p∗)] +
N∑
k=2

kµk(p
∗)

∫ ε

p∗
F (ε)k−1f(ε)dε

− (p∗ − r)
N∑
k=2

kµk(p
∗)

(∫ ε

p∗
(k − 1)F (ε)k−2f(ε)2dε+ F (p∗)k−1f(p∗)

)
= 0. (41)

14Downward price deviations lead to an expression similar to equation (5). The FOCs corresponding to upward and
downward deviations are identical after imposing symmetry.
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Note that when we set p∗ = r, the LHS of this equation is strictly positive. We now show

that when we set p∗ = pm, then it is strictly negative, which implies that there exists a candidate

equilibrium price p∗ ∈ [r, pm].

Since the monopoly price pm satisfies 1−F (pm)− (pm− r)f(pm) = 0, when we evaluate the LHS

of the FOC at pm we obtain:

N∑
k=2

µk(p
∗)
[
1− F (pm)k

]
− (pm − r)

N∑
k=2

kµk(p
∗)

(∫ ε

pm
(k − 1)F (ε)k−2f(ε)2dε+ F (pm)k−1f(pm)

)
,

(42)

where we have used the fact that
∫ ε
pm F (ε)k−1f(ε)dε = 1− F (pm)k.

We now claim equation (42) is negative. To show it, we first observe that

1− F (pm)k = (1− F (pm))
k−1∑
j=0

F (pm)j = (pm − r)f(pm)
k−1∑
j=0

F (pm)j ,

where we have used again the monopoly pricing rule, and write equation (42) as follows:

(pm−r)

{
f(pm)

N∑
k=2

µk(p
∗)

1− F (pm)k

1− F (pm)
−

N∑
k=2

kµk(p
∗)

(∫ ε

pm
(k − 1)F (ε)k−2f(ε)2dε+ F (pm)k−1f(pm)

)}
.

Putting terms together, this simplifies to

(pm − r)
N∑
k=2

µk(p
∗)

{
f(pm)

[
1− F (pm)k

1− F (pm)
− kF (pm)k−1

]
− k

∫ ε

pm
(k − 1)F (ε)k−2f(ε)2dε

}
.

We now note that the expression within curly brackets is increasing in pm. In fact, its derivative is

equal to

f ′(pm)

[
1− F (pm)k

1− F (pm)
− kF (pm)k−1

]
+ f2(pm)

[
1− F (pm)k − kF (pm)k−1

(1− F (pm))2

]
=

1− F (pm)k − kF (pm)k−1(1− F (pm))

(1− F (pm))2

[
f ′(pm)(1− F (pm) + f2(pm)

]
> 0

where the sign follows by log-concavity of f . Since it is increasing in pm and it is equal to zero when

we set pm = ε, we conclude it is always negative. This shows that a candidate equilibrium price

p∗ ∈ [r, pm] exists in the non-sequential search N -firm model with differentiated products.

We now prove that the candidate equilibrium is indeed an equilibrium under the conditions

provided in the Proposition. In proving this part, we make use of the following result by Choi and

Smith (2017).
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Lemma 1 (Choi and Smith 2017, Corollary 1). Suppose that γ (x, y) is differentiable in x, it has

no flat regions with respect to x and let γ (x, y) = γI (x, y) + γD (x, y) be any decomposition such

that γI (x, y) is increasing and γD (x, y) is decreasing in x for all y. If γI (·, y′) is more concave than

−γD (·, y′′) for all y′, y′′, then
∫
γ (x, y) dH (y) is quasi-concave, where H is a probability measure.

To use this Lemma in our setting, let us rewrite the expected payoff of a firm i that deviates

from the symmetric equilibrium price by charging a price pi 6= p∗ as follows:

πi(pi; p
∗) =

∫ c

0
γ (pi, c) dG (c) , (43)

where

γ (pi, c) =

{
(pi − r) Pr

[
εi − pi ≥ max{max

{
ε1, ε2, . . . , εk(c)−1

}
− p∗, 0}

]
if k (c) ≥ 2,

(pi − r) Pr[εi ≥ pi] if k (c) = 1.
(44)

where k (c) denotes the optimal number of products checked by a consumer with search cost c. We

apply Choi and Smith’s result to the function γ in (44) and probability measure given by the search

cost distribution G. We first check below that the function γ defined in (44) is differentiable, has

no flat regions and is quasi-concave in pi. Two (sufficiently different) values c′ and c′′ correspond to

two terms of the sum in (45), that is, γk(c′) (pi; p
∗) and γk(c′′) (pi; p

∗). So considering two (sufficiently

different) values c′ and c′′, c′ < c′′, is equivalent to considering two arbitrary terms γh (pi; p
∗) and

γj (pi; p
∗) such that h < j.

Recall that k(c) takes values on the discrete set {0, 1, 2, ..., N}. Therefore, in the case of our

payoff the integration in (43) can be written as a sum taking into account the proportions µk(p
∗) of

consumers who search k = k (c) times. Using the uniform distribution of match values, the expected

payoff in (43) then becomes:

πi(pi; p
∗) =

N∑
k=1

γk (pi; p
∗) (45)

where

γk (pi; p
∗) =


(pi − r)

kµk(p
∗)

N

(
εk − p∗k

kεk
+
p∗ − pi
ε

)
if pi < p∗,

(pi − r)
µk(p

∗)

N

(ε− pi + p∗)k − p∗k

εk
if pi ≥ p∗.

(46)

We start by showing that γk is well-behaved.

Lemma 2 γk is differentiable, has no flat regions and is quasi-concave on [r, ε].
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Proof. For simplicity of notation, let γLk(pi) be the part of the function γk corresponding to

pi < p∗, that is γLk(pi) ≡ γk(pi < p∗; p∗). Inspection of the expression in (46) immediately reveals

that γLk(pi) is quadratic and strictly concave on [r, p∗].

Similarly, let γRk(pi) be the part of the function γk corresponding to pi ≥ p∗, that is γRk(pi) ≡

γk(pi ≥ p∗; p∗). The first and second order derivatives of γRk with respect to pi are:

dγRk (p)

dpi
=

µk

Nεk

{
(ε+ p∗ − pi)k−1 [(ε+ p∗ − pi)− k(pi − r)]− p∗k

}
(47)

d2γRk (pi)

dp2
i

= −k µk

Nεk
(ε+ p∗ − pi)k−2 [2 (ε+ p∗ − pi)− (k − 1) (pi − r)] . (48)

Therefore, γRk is strictly concave for pi ∈
(
r,

2 (ε+ p∗) + (k − 1) r

k + 1

)
and strictly convex for pi >

2 (ε+ p∗) + (k − 1) r

k + 1
.

Since the first order derivative is positive at pi = r and negative at both pi =
2 (ε+ p∗) + (k − 1) r

k + 1
and pi = ε, that is,

dγRk (r)

dpi
=

µk

Nεk

[
(ε+ p∗ − r)k − p∗k

]
> 0,

dγRk
dpi

(
2 (ε+ p∗) + (k − 1) r

k + 1

)
= − µk

Nεk

((
k − 1

k + 1

)k−1

(ε+ p∗ − r)k + p∗k

)
< 0,

dγRk (ε)

dpi
= − µk

Nεk
kp∗k−1 (ε− r) < 0,

we conclude that γRk is increasing in pi from r up to its maximum and then decreasing up to ε.

We also observe that γk is differentiable at pi = p∗, that is, its left hand side and right hand side

derivatives at p∗ are equal, that is,

dγLk (p∗)

dpi
=
dγRk (p∗)

dpi
=

µk

Nεk

[
εk − p∗k − k (p∗ − r) εk−1

]
.

Consequently, γk is increasing at r, concave for r < pi < max

{
p∗,

2 (ε+ p∗) + (k − 1) r

k + 1

}
and

decreasing for pi > max

{
p∗,

2 (ε+ p∗) + (k − 1) r

k + 1

}
. This implies that γk is quasi-concave in pi.

The proof is now complete.

We have shown that γk is quasi-concave and has exactly one peak strictly between r and ε. Let

the prices corresponding to the peaks of γk and γ`, k > `, be denoted by pk and p`, respectively. Our

next result shows that these prices are ranked.

Lemma 3 pk > p` for k < `.
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Proof. We can obtain the result by proving pk > pk+1 for arbitrary k. First we show that γLk

and γLk+1 peak at prices pLk and pLk+1 with pLk > pLk+1. Taking the FOC in expression (46), these

prices must satisfy the equality:

pLj =
εj − p∗j

2jεj−1
+
p∗ + r

2
, j = k, k + 1.

Therefore, pLk > pLk+1 is equivalent to (k + 1) εk(εk − p∗k) > kεk−1(εk+1 − p∗k+1). Dividing by

p∗2k+1 both sides of this inequality and simplifying gives (k + 1)x
(
xk − 1

)
> k

(
xk+1 − 1

)
, where

x = ε/p∗ > 1. This inequality holds because the function φ (x) = (k + 1)x
(
xk − 1

)
−k

(
xk+1 − 1

)
=

xk+1 − (k + 1)x + k > 0 for x > 1. Indeed, φ (1) = 0 and since dφ/dx = (k + 1)
(
xk − 1

)
> 0, φ is

increasing for x > 1. Consequently,

pLk > pLk+1. (49)

This implies that pk > pk+1 when γk and γk+1 peak at prices below p∗.

Suppose now that γk and γk+1 peak at prices above p∗. In this case, these prices must satisfy

the FOC: (
ε+ p∗ − pj

)j−1 [
ε+ p∗ − pj − j(pj − r)

]
− p∗k = 0, j = k, k + 1. (50)

The statement is true if the FOC corresponding to pk+1 evaluated at pk is negative. That is, we

need to show that:

(ε+ p∗ − pk)
k [ε+ p∗ − pk − (k + 1)(pk − r)] < p∗k+1.

We can use the FOC (50) corresponding to pk to rewrite the previous inequality as:

(ε+ p∗ − pk)
k [ε+ p∗ − pk − (k + 1)(pk − r)]

(ε+ p∗ − pk)
k−1 [ε+ p∗ − pk − k(pk − r)]

<
p∗k+1

p∗k

After simplification we get the following simpler condition:

(ε+ r − 2pk)(ε+ p∗ − pk) < k(ε− pk)(pk − r). (51)

It is immediate to see that the LHS of this inequality decreases in pk. The RHS, on the contrary,

increases in pk because its derivative k(ε + r − 2pk) is always positive given that pk is always less

than or equal to the monopoly price. These two facts imply that if (51) holds for pk = p∗ then it

holds for any pk. So it is sufficient to prove (51) for pk = p∗, that is:

(ε+ r − 2p∗)ε < k(ε− p∗)(p∗ − r).
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The FOC (50) for j = k and pk = p∗ becomes

k(p∗ − r) =
ε− p∗k

εk−1
. (52)

Using (52), the inequality we wish to prove becomes:

(ε+ r − 2p∗)ε <
ε− p∗k

εk−1
(ε− p∗).

After simplification, we get:

εk(p∗ − r) > p∗k(ε− p∗),

which, by using again (52), can be written as εk+1 − (k + 1)εp∗k + kp∗k+1 > 0. This inequality is

always true because the LHS is increasing in ε and it holds for ε = 0.

Finally, we mention that in the case where γk peaks above p∗ and γk+1 peaks below p∗ there is

nothing to prove. The case where γk peaks below p∗ and γk+1 peaks above p∗ cannot occur because

in this case dγk+1 (p∗) /dpi > 0, which means that dγLk+1 (p∗) /dpi > 0 is satisfied as well. This

latter inequality implies that pLk+1 > p∗, so pLk < pLk+1. This is, however, a contradiction with

(49). The proof is now complete.

Lemmas 2 and 3 have shown that any two arbitrary summands ` > k in the expression (45) are

quasi-concave in pi and that their corresponding peaks pk and p` are such that pk > p`. This implies

that for prices pi on the interval [pk, p`] the summand γk is increasing in pi while the summand γ` is

decreasing in pi.

Following Choi and Smith (2017), for quasi-concavity of the payoff (45), it is sufficient to prove

that γk is more concave than −γ` for values of pi in the interval [p`, pk]. This is because for prices

pi < p`, both γk and γ` are strictly concave (see above) in pi and for prices pi > pk, both γk and γ`

are decreasing in pi.

We then proceed by showing that

d2γk (pi) /dp
2
i

dγk (pi) /dpi
≤ −d

2γ` (pi) /dp
2
i

−dγ` (pi) /dpi
(53)

for any pi ∈ [p`, pk], pi 6= p∗.

There are three cases to consider. First, suppose that p∗ > pk. In this case, both functions γk

and γ` are strictly concave on [p`, pk]. Therefore, the above inequality is satisfied. Second, suppose

that p` < p∗ < pk. For the very same reason, the inequality also holds. Finally, the nontrivial case,

suppose that p∗ < p` < pk. In this case, after simplifying, inequality (53) becomes:
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−k [2 (ε+ p∗ − pi)− (k − 1) (pi − r)]
(ε+ p∗ − pi)k−1 [(ε+ p∗ − pi)− k (pi − r)]− p∗k

≤ ` (ε+ p∗ − pi)`−k [2 (ε+ p∗ − pi)− (`− 1) (pi − r)]
− (ε+ p∗ − pi)`−1 [(ε+ p∗ − pi)− ` (pi − r)] + p∗`

,

(54)

where we have used the expressions for the first and second-order derivatives in (47) and (48).

Note that the denominators of this inequality are both positive. Note also that

2 (ε+ p∗) + (k − 1) r

k + 1
>

2 (ε+ p∗) + (`− 1) r

`+ 1
.

Therefore, when

pi <
2 (ε+ p∗) + (`− 1) r

`+ 1
(55)

the inequality (53) is satisfied trivially. Whether (54) holds or not is nontrivial when the numerator

of the RHS is negative, that is, when pi ≥
2 (ε+ p∗) + (`− 1) r

`+ 1
because the numerator of the LHS

is negative.

We make now some useful observations. First, note that

dγRk
dpi

(
ε+ p∗ + kr

k + 1

)
= − µk

Nεk
p∗k ≤ 0,

which means that pk ≤
ε+ p∗ + kr

k + 1
. Since pi is restricted to be smaller than pk, it is also smaller

than
ε+ p∗ + kr

k + 1
. So it is sufficient to prove the inequality (53) for

(`− 1) r + 2 (ε+ p∗)

`+ 1
≤ pi ≤

ε+ p∗ + kr

k + 1
. (56)

(Otherwise, when k and ` are such that
ε+ p∗ + kr

k + 1
<

(`− 1) r + 2 (ε+ p∗)

`+ 1
it holds that γ` is

concave up to the peak pk of γk, so inequality (53) is satisfied trivially.)

Inequality (54) is equivalent to:

` (ε+ p∗ − pi)`−k [2 (ε+ p∗ − pi)− (`− 1) (pi − r)]
(

(ε+ p∗ − pi)k−1 [(ε+ p∗ − pi)− k(pi − r)]− p∗k
)

−k [2 (ε+ p∗ − pi)− (k − 1) (pi − r)]
(

(ε+ p∗ − pi)`−1 [(ε+ p∗ − pi)− ` (pi − r)]− p∗`
)
≥ 0.

Taking common factors together, this expression can be written as:

` (ε+ p∗ − pi)`−1 [2 (ε+ p∗ − pi)− (`− 1) (pi − r)]
(

[(ε+ p∗ − pi)− k(pi − r)]− p∗
(

p∗

ε+p∗−pi

)k−1
)

−k (ε+ p∗ − pi)`−1 [2 (ε+ p∗ − pi)− (k − 1) (pi − r)]
(

[(ε+ p∗ − pi)− ` (pi − r)]− p∗
(

p∗

ε+p∗−pi

)`−1
)
≥ 0.
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and by dropping the factor (ε+ p∗ − pi)`−1 we obtain:

−` [2 (ε+ p∗ − pi)− (`− 1) (pi − r)] p∗
(

p∗

ε+p∗−pi

)k−1
+

` [2 (ε+ p∗ − pi)− (`− 1) (pi − r)] [(ε+ p∗ − pi)− k(pi − r)] +

k [2 (ε+ p∗ − pi)− (k − 1) (pi − r)] p∗
(

p∗

ε+p∗−pi

)`−1
−

k [2 (ε+ p∗ − pi)− (k − 1) (pi − r)] [(ε+ p∗ − pi)− ` (pi − r)] ≥ 0.

Putting together the second and the third lines of this expression we get:

−` [2 (ε+ p∗ − pi)− (`− 1) (pi − r)] p∗
(

p∗

ε+p∗−pi

)k−1
+

k [2 (ε+ p∗ − pi)− (k − 1) (pi − r)] p∗
(

p∗

ε+p∗−pi

)`−1
+

(`− k)
[
2 (ε+ p∗ − pi)2 + `k(pi − r)2 − (`+ k − 1) (ε+ p∗ − pi) (pi − r)

]
≥ 0

(57)

The first term of this inequality is positive because by (56) pi ≥
2 (ε+ p∗) + (`− 1) r

`+ 1
. The second

term is positive because by (56) pi ≤
ε+ p∗ + kr

k + 1
, which is less than

2 (ε+ p∗) + (k − 1) r

k + 1
. The third

term divided by (`− k) (pi − r)2 is equal to the quadratic function

A (t) = 2t2 − (`+ k − 1) t+ `k

in t =
ε+ p∗ − pi
pi − r

> 0. Therefore, A (t) ≥ 0 for any t, if its discriminant (`+ k − 1)2 − 8`k ≤ 0.

Solving this inequality gives

1 + 3`−
√

8` (`+ 1) ≤ k ≤ 1 + 3`+
√

8` (`+ 1). (58)

The RHS of this inequality is trivially satisfied because k < `. The LHS of this inequality is satisfied

for k = 1 only if ` ≤ 8. This is because the expression 1 + 3` −
√

8` (`+ 1) is increasing in ` ≥ 1

and is equal to 1 for ` = 8. Consequently, (58) is satisfied for any k, ` such that 1 ≤ k < ` ≤ N

when N ≤ 8 and this implies that A (t) ≥ 0 for any t. This completes the proof that the payoff is

quasi-concave when N ≤ 8.

For N ≥ 9 there is at least one pair of k, ` with 1 ≤ k < ` ≤ N such that the discriminant of

A (t) is positive. Therefore, in this case we follow a different strategy. Recall that when (55) holds

the inequality (53) is satisfied trivially. Note that condition (55) is equivalent to t >
`− 1

2
; so for

t >
N − 1

2
(55) is satisfied for any ` ≤ N . At the same time we observe that because t is decreasing

in pi, we have

t =
ε+ p∗ − pi
pi − r

≥ ε+ r − pm

pm − r
=
ε+ r − (ε+ r) /2

(ε+ r) /2− r
=
ε+ r

ε− r
,

where pm = (ε+ r) /2 is the monopoly price. For given N and ε, by choosing the marginal cost

r such that
ε+ r

ε− r
>

N − 1

2
, the inequality (53) will be satisfied trivially for any k, ` such that
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1 ≤ k < ` ≤ N . This means that r should satisfy r > N−3
N+1ε; in this case the payoff will be

quasi-concave. The proof is now finished. �

Proof of Proposition 4. For equation (33) to hold, either the first or the second bracket must

be equal to zero (or both of course). Suppose that the second bracket is equal to zero. In that case,

the first equation (32) simplifies to:

1− 2p∗1 = 0,

which implies that p∗1 = 1/2. However, this solution is not valid because the equilibrium price cannot

be the monopoly price of 1/2. Therefore, it must be the case that the first bracket of equation (33)

is equal to zero, that is, p∗1(4p∗2− 2) + p∗2(4− 3p∗2)− 1 = 0. From this, we obtain an expression for p∗1:

p∗1 =
4p∗2 − 3p∗22 − 1

2(1− 2p∗2)
. (59)

Because p∗1 < 1/2, it is easy to see that p∗2 has to satisfy p∗2 <
1
3

(
3−
√

3
)
. Moreover, because p∗1 > p∗2,

it must be the case that p∗2 >
√

2− 1.

We can also use the relationship in equation (59) to find the interval of admissible c’s. For this

we plug p∗1 into the expression for c1(p∗1, p
∗
2), which gives:

c1(p∗2) =
20p∗52 − 53p∗42 + 104p∗32 − 158p∗22 + 92p∗2 − 17

24(1− 2p∗2)2
.

Because c1(p∗2) must be lower than c, and p∗2 ∈ [
√

2 − 1, 1
3

(
3−
√

3
)
], the equilibrium does not exist

outside the interval of search cost upper bounds c ∈ [8
√

2−11
3 , 1

8 + 1
18
√

3
].

If we plug the value of p∗1 in equation (59) into equation (32) and rearrange it, we obtain an

expression involving only p∗2 and c:

P(p∗2, c) ≡ 384c− 420p9
2 + 2073p8

2 − 5328p7
2 + 10060p6

2 − 24(192c+ 545)p5
2 + 6(2688c+ 1733)p4

2

−48(424c+ 103)p3
2 + 108(112c+ 13)p2

2 − 12(288c+ 19)p2 + 17 = 0. (60)

Note that P(p2, c) computed at p2 =
√

2− 1 is equal to

P(
√

2− 1, c) =
(

645696− 456576
√

2
)
c− 3395968

√
2 + 4802624,

which computed at c = 8
√

2−11
3 is

P

(
√

2− 1,
8
√

2− 11

3

)
= 0,
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and when computed at c = 1
8 + 1

18
√

3
is

P
(√

2− 1,
1

8
+

1

18
√

3

)
= 1.4988× 10−3 > 0.

Further, note that P(p2, c) computed at p2 = 1
3

(
3−
√

3
)

is

P
(

1

3

(
3−
√

3
)
, c

)
=

1124

81

√
3− 649

27
= −2.159 2× 10−3 < 0.

Consequently, for any c ∈
(

8
√

2−11
3 , 1

8 + 1
18
√

3

)
we have

P(
√

2− 1, c) > 0

P(
1

3

(
3−
√

3
)
, c) < 0,

which implies that there is p∗2 ∈ [
√

2−1, 1
3

(
3−
√

3
)
] for which P(p∗2, c) = 0. Because the correspond-

ing p∗1 is of course greater than p∗2, the proof that an equilibrium exists is now complete.

We can also prove that the above established solution is unique by showing that P(p2, c) is strictly

decreasing in p2 for any admissible c. In order to do this, note that

dP(p2, c)

dp2
= H1(p2)c+H2(p2) (61)

where

H1(p2) =− 3456 + 24 192p2 − 61 056p2
2 + 64 512p3

2 − 23040p4
2 (62)

H2(p2) =− 228 + 2808p2 − 14 832p2
2 + 41 592p3

2 − 65 400p4
2 + 60 360p5

2 − 37 296p6
2

+ 16 584p7
2 − 3780p8

2. (63)

We now make the following observations about H1(p2) and H2(p2). First, H1(p2) is increasing

in p2 ∈
[√

2− 1, 1
3

(
3−
√

3
)]

but because H1(1
3

(
3−
√

3
)
) = −2.4624, it is always negative. Second,

H2(p2) is also increasing in p2 ∈
[√

2− 1, 1
3

(
3−
√

3
)]

.

From these remarks we conclude that if the derivative (61) is negative for the lowest possible

value for c and the highest possible value for p2, then it is always negative. Substituting c = 8
√

2−11
3

and p2 = 1
3

(
3−
√

3
)

in (61) gives

dP(1
3

(
3−
√

3
)
, 8
√

2−11
3 )

dp2
= −2.4624 · 8

√
2− 11

3
+ 0.14987 = −0.10762.

This shows that dP(p2,c)
dp2

is negative for all admissible p2’s and c’s, so the function P(p2, c) is strictly

decreasing in p2 for any admissible c, and therefore, there can only be one solution to P(p2, c) = 0.
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(b) Equilibrium prices

Figure 8: Prominence price equilibrium (α = 1) vs. symmetric equilibrium price

We illustrate the the above findings using Figure 8. The graph of Figure 8(a) shows the polynomial

in equation (60) for the highest (red curve) and lowest (blue curve) admissible upper bound of the

search cost distribution. We plot the polynomials for all p∗2 ∈
(√

2− 1, 1−
√

3/3
)
. In both cases,

there is a unique solution in p∗2. The graph of Figure 8(b) gives the price equilibrium for all admissible

c values. The price of the prominent firm is in red, the price of the non-prominent firm is in blue and,

for comparison purposes, we also plot the symmetric equilibrium price in black. Clearly, irrespective

of the value of c, both prices are lower than the symmetric equilibrium price. As a result, consumers

are better off when one firm is prominent. �
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