Spreadsheet Modeling and Applications, 1e

Albright, Winston

1.       Introduction to Modeling

1.1.    Introduction

1.2.    A Waiting-Line Example

1.3.    Modeling Versus Models

1.4.    The Seven-Step Modeling Process

1.5.    A Successful Management Science Application

1.6.    Why Study Management Science?

1.7.    Software Included in this Book

1.8.    Conclusion

2.       Introductory Spreadsheet Modeling

2.1.    Introduction

2.2.    Basic Spreadsheet Modeling: Concepts and Best Practices

2.3.    Breakeven Analysis

2.4.    Ordering with Quantity Discounts and Demand Uncertainty

2.5.    Decisions Involving the Time Value of Money

2.6.    Conclusion

Appendix: Tips for Editing and Documenting Spreadsheets

3.       Introduction to Optimization Modeling

3.1.    Introduction

3.2.    Introduction to Optimization

3.3.    A Two-Variable Model

3.4.    Sensitivity Analysis

3.5.    Properties of Linear Models

3.6.    Infeasibility and Unboundedness

3.7.    A Product Mix Model

3.8.    A Multiperiod Production Model

3.9.    A Comparison of Algebraic and Spreadsheet Models

3.10.A Decision Support System

3.11.Conclusion

Appendix: Information on Solvers

 

4.       Linear Programming Models

4.1.    Introduction

4.2.    Advertising Models

4.3.    Static Workforce Scheduling Models

4.4.    Aggregate Planning Models

4.5.    Blending Models

4.6.    Production Process Models

4.7.    Financial Models

4.8.    Conclusion

5.       Network Models

5.1.    Introduction

5.2.    Transportation Models

5.3.    Assignment Models

5.4.    Minimum Cost Network Flow Models

5.5.    Shortest Path Models

5.6.    Project Scheduling Models

5.7.    Conclusion

6.       Linear Optimization Models with Integer Variables

6.1.    Introduction

6.2.    Overview of Optimization with Integer Variables

6.3.    Capital Budgeting Models

6.4.    Fixed-Cost Models

6.5.    Set Covering Models and Location–Assignment Models

6.6.    Conclusion

7.       Nonlinear Optimization Models

7.1.    Introduction

7.2.    Basic Ideas of Nonlinear Optimization

7.3.    Pricing Models

7.4.    Advertising Response and Selection Models

7.5.    Facility Location Models

7.6.    Models for Rating Sports Teams

7.7.    Portfolio Optimization Models

7.8.    Conclusion

8.       Decision Making Under Uncertainty

8.1.    Introduction

8.2.    Elements of a Decision Analysis

8.3.    The PrecisionTree Add-In

8.4.    Bayes’ Rule

8.5.    Multistage Decision Problems

8.6.    Incorporating Attitudes Toward Risk

8.7.    Conclusion

9.       Introduction to Simulation Modeling

9.1.    Introduction

9.2.    Real Applications of Simulation

9.3.    Probability Distributions for Input Variables

9.4.    Simulation with Built-In Excel Tools

9.5.    Introduction to @RISK

9.6.    The Effects of Input Distributions on Results

9.7.    Conclusion

10.   Simulation Models

10.1.Introduction

10.2.Operations Models

10.3.Financial Models

10.4.Marketing Models

10.5.Simulating Games of Chance

10.6.Conclusion

Appendix: Creating Histograms with Excel Tools

11.   Queueing Models

11.1.Introduction

11.2.Elements of Queueing Models

11.3.The Exponential Distribution

11.4.Important Queueing Relationships

11.5.Analytical Queueing Models

11.6.Queueing Simulation Models

11.7.Conclusion

12.   Regression and Forecasting Models

12.1.Introduction

12.2.Overview of Regression Models

12.3.Simple Regression Models

12.4.Multiple Regression Models

12.5.Overview of Time Series Models

12.6.Moving Averages Models

12.7.Exponential Smoothing Models

12.8.Conclusion

 


 

Visit the Cengage site for our books.

Send e-mail to albright@indiana.edu

 

Albright is retired from the Kelley School of Business, Indiana University, Bloomington and now works as a consultant for Palisade Corp.

 

Back to home page

 

Updated: 1/13/2015